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We study the low temperature properties of p-spin glass models with finite connectivity and of some
optimization problems. Using a one-step functional replica symmetry breaking ansatz we can solve ex-
actly the saddle-point equations for graphs with uniform connectivity. The resulting ground state energy
is in perfect agreement with numerical simulations. For fluctuating connectivity graphs, the same ansatz
can be used in a variational way: For p-spin models (known as p-XOR-SAT in computer science)
it provides the exact configurational entropy together with the dynamical and static critical connec-
tivities (for p � 3, gd � 0.818, and gs � 0.918), whereas for hard optimization problems like 3-SAT
or Bicoloring it provides new upper bounds for their critical thresholds (gvar

c � 4.396 and gvar
c � 2.149).
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The nature of the glassy phase and of the out-of-
equilibrium dynamics of physical systems are two inter-
twined aspects of the behavior of many complex systems
found in different fields, ranging from physics or biology
to computer science and game theory. The existence and
the characterization of long time states and the question
of relaxation times are important open issues of modern
statistical mechanics and probability theory.

Fully connected spin glasses have served as prototype
models able to provide a highly nontrivial static and off-
equilibrium phenomenology already at the mean-field level
[1,2]. However, some important features of complex real-
world systems heavily rely on the connectivity pattern
which is particularly simple in these systems.

For instance, supercooled liquids and structural glasses
are characterized by a finite number of short range inter-
actions for each particle (bounded by the so-called kissing
number of the particles), which leads to a complex struc-
ture of energy and entropy barriers in phase space. Hetero-
geneities in both the static and the off-equilibrium regimes
witness such underlying constraints [3].

In computer science, nontrivial ensembles of hard
combinatorial optimization problems, the so-called NP-
complete problems [4], typically map onto spin glasses
with finite average connectivity (or degree) at zero tem-
perature [5]. In the last years methods from statistical
physics have been very useful in order to study phase
transitions in such problems [6]. The hardest among these
share characteristics that are largely independent of the
specific algorithms adopted for their solution. Important
features such as solution time or memory requirements are
conjectured to be strictly related to the geometrical struc-
ture of their low temperature phase space [7]. For a survey
on the state of the art we address the reader to two recent
special issues [8].

The main technical obstacle for the development of a
statistical physics theory over finite degree graphs has
been the extension of the Parisi replica symmetry breaking
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(RSB) scheme to the functional level [9,10]. The replica
symmetric (RS) phases are described by a single probabil-
ity distribution function of the effective fields, capturing
the site-to-site fluctuations of the local magnetization. On
the contrary, when the symmetry among replicas breaks
down, there appear many pure states, each one endowed
with its own effective field distribution. The site-to-site
fluctuations induce correlations among such probability
distributions. The overall free energy has to be optimized
in a large functional space which becomes more and more
complex as the Parisi scheme is iterated. Recently in [11] a
population dynamics algorithm has been introduced which
is able, for large enough computer resources, to reconstruct
the field distributions that lead to the numerical solution of
the one-step RSB (1RSB) equations in full generality.

In this Letter we reexamine in the appropriate 1RSB
context an ansatz previously introduced in [10] to get an
approximated solution of the Viana-Bray model. That
ansatz, which neglects site-to-site fluctuations, allows for
great simplifications in the functional equations describing
the low temperature regime of spin glasses and optimiza-
tion problems defined on graphs with finite connectivity.
The ansatz solves exactly the saddle-point equations for
models defined over uniform degree random hypergraphs,
and it is simple enough to allow for the explicit computa-
tion of the thermodynamic quantities at low temperature,
which remarkably agree with numerics. As representative
instances, we compute the ground state (GS) energy of the
p-spin glass and of the Bicoloring problem. In both cases,
the problem of finding the GS is a hard computational task
(NP-hard). To the best of our knowledge, the one pre-
sented here is the first exact, fully analytical solution for
diluted models in the RSB phase.

For the p-spin glass with fluctuating connectivities
where site-to-site correlations are in principle important,
the same ansatz allows one to evaluate exactly the configu-
rational entropy and the dynamical and static transition
points found as the average connectivity is increased
© 2001 The American Physical Society 127209-1



VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001
[12]. In computer science this model is known as random
p-XOR-SAT [13] and its complete probabilistic charac-
terization is considered an open problem (at present only
lower and upper rigorous bounds to the critical threshold
are known [14]). From a combinatorial standpoint this
problem has straight connections with the well-studied
domain of random linear systems over finite fields, with
applications in coding and cryptography [15].

In the fluctuating connectivity framework, we have also
tested the method as a variational approach to the study
of the GS properties of random NP-complete combinato-
rial problems, such as random 3-SAT or Bicoloring [4],
obtaining the currently most accurate analytical estimation
of their critical SAT/UNSAT thresholds (see below).

In what follows we shall concentrate on the p � 3
spin interactions, the generalization to arbitrary p being
straightforward. The Hamiltonian of the models we have
chosen to study reads H �

P
�i,j,k�[E G�Si ,Sj ,Sk�, where

Si � 61 are Ising spins and E is the set of triples (pla-
quettes), which form a random hypergraph (locally the
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graph has the topology of a Husimi tree). In the fixed con-
nectivity case, every index i � 1, . . . ,N must appear in E
the same number k 1 1 of times. However, the presence
of hyperloops [12] of length of the order log�N � induces
nontrivial contributions to the free energy. In the fluctuat-
ing connectivity case, each possible plaquette is chosen at
random with probability g�N2.

In the three-spin glass case, the local interaction reads
G�Si ,Sj,Sk � � 2JijkSiSjSk with Jijk � 61 randomly.
For the Bicoloring problem we have G�Si, Sj ,Sk� �
d�Si,Sj�d�Si,Sk� � 1

4 �SiSj 1 SiSk 1 SiSj 1 1�. Each
interaction adds zero energy only if the spin configuration
is not monochromatic; i.e., not all spins on the plaquette
are equal. The optimization problem amounts to minimiz-
ing the number of monochromatic plaquettes.

First we focus on the fixed connectivity case (with con-
nectivity k 1 1). In order to calculate the averaged free
energy at inverse temperature b we resort to the replica
method, where the average free energy is evaluated from
an analytic continuation of the integer moments of the par-
tition function [1]. The replicated free energy reads
bfn � Zn � extr
f� �s�
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with G�x, y, z� � xyz for the spin glass and G�x, y, z� �
2�xy 1 yz 1 xz 1 1��4 for Bicoloring. a � 1, . . . ,n
is the replica index, �s � �s1, . . . , sn� is a vector of
n Ising variables, and f� �s� ~ c� �s�k, where c� �s� �
N21

P
i d��Si 2 �s� counts the fraction of sites i having

replicated spin Sa
i � sa. The functional order parameter

f� �s� must be symmetric in �s. From Eq. (1) one obtains
the following saddle point equations:

f� �s� �
Dk� �s�P
�s Dk� �s�

, (2)

D� �s� �
X
�t, �m

f� �t�f� �m� exp

√
b

nX
a�1

G�sa, ta, ma�

!
. (3)

The preceding equations admit a paramagnetic and a spin-
glass solution. As long as replica symmetry holds (e.g.,
in the paramagnetic or ferromagnetic phases) the order
parameter f� �s� depends only on the sum

P
a sa, i.e., on

a single probability distribution of effective local fields.
However, in the glassy phase the RS solution is not optimal
(and yet stable), and one needs a RSB ansatz, which is
in general very complicated, even in the simplest case of
1RSB. Nevertheless, in our case, the observation that the
sites are locally equivalent suggests to neglect site-to-site
fluctuations in the distribution of the effective fields. In
the replica formalism this fact is reflected in the use of the
following factorized ansatz [10,16]:

f� �s� �
n�mY
g�1

f̃� �sg� �
n�mY
g�1

Z
dh P�h�

ebh
Pm

a�1
sa

g

�2 coshbh�m
, (4)

where the n replicas have been divided into n�m groups of
m replicas each and �sg is an m-dimensional vector with
the components belonging to the gth group. The general
interpretation of the 1RSB order parameter [11] shows that
P�h� is the probability distribution of the cavity field, i.e.,
the field on a site after one of the interactions of that site
has been removed. The above ansatz is consistent with
the saddle-point equations (2) and (3), and the very same
equations are verified by f̃� �sg� and D̃� �sg� with the sum
in (3) running only up to m.

The RSB saddle-point equations are different for the two
models. In the three-spin case we find

P�h�
�2 coshbh�m

� A21
k

Z kY
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√
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kX
i�1
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(5)

where Q�u� �
R
DhDg d�u 2 u�h, g��, with Dh �

dh P�h� and tanh�bu�h,g�� � tanh�b� tanh�bh� tanh�bg�,
and Ak normalizes the P�h�. For Bicoloring we find

P�h�
�2 coshbh�m

� A21
k

Z kY
i�1

DhiDgiW�hi ,gi�m

�4 cosh�bhi� cosh�bgi��m

3 d

√
h 2

kX
i�1

t�hi ,gi�

!
, (6)

where t�h, g� � 1
2b21 ln�a2�a1� and W �h,g� �

p
a2a1

with a6 � 2 cosh�b�h 2 g�� 1 2 cosh�b�h 1 g 6 1��e2b .
The RS (paramagnetic) equation is recovered for m � n
(m � 1). As usual, in order to find the thermodynamical
free energy a maximization of the free-energy functional
with respect to m should be performed.

For a generic temperature the solutions to (5) and (6)
can easily be found numerically with a RS-like population
dynamics, which requires much less computational effort
than the 1RSB algorithm of Ref. [11].
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Interestingly enough in the limit of zero temperature
we can solve the equations analytically. Indeed, for b !

` we have u�h,g� ! sgn�hg� min�1,h,g� and t�h,g� !
2sgn�h� min�1,h,g�u�hg� (where u is the step function).
Then both u�h,g� and t�h, g� can take only the values 0
and 61 for integer valued cavity fields. Rational valued
solutions also exist and yet vanish close to the free-energy
maximum.

For the p-spin with odd connectivity k 1 1 and for the
Bicoloring the analytical expressions are quite involved
and will be given elsewhere [17]. For p spin with even
connectivities (i.e., odd k) the solution can be written in a
very compact way,

f0� y, k 1 1� �
2k 2 1

3
g� y, k 1 1� 2

2k 1 2
3

g� y, k� ,

with g� y, k� �
1
y

ln

"
22k

kX
i�0

√
k
i

!
eyjk22ij

#
,

(7)

where y is the zero temperature limit of the quantity bm
which turns out to be finite. The GS energy (egs) cor-
responds to the maximum of f0 [1]. For connectivities
smaller than 4 for the p-spin and 7 for the Bicoloring, the
maximum is always in y � ` and corresponds to the RS
paramagnetic solution P�h� � d�h�. The RS spin-glass
solution, located in y � 0, has always a lower energy with
respect to the physical one. For some connectivities the
free-energy values (egs) are reported in the tables, together
with the corresponding y � y� saddle-point values. For
the three-spin case we also report numerical estimations
of the GS energy (enum

gs ) obtained by extrapolating the
results of exhaustive enumerations (sizes up to N � 60
averaged over 1000–10 000 samples). Moreover, in [18]
the y� value for the three-spin model with k 1 1 � 4 has
been estimated to be 1.41(1), perfectly compatible with our
analytic value.

A further check of the analytic solution in the p-spin
case is provided by the proper convergence, in the limit
k ! `, to the exact solution of the fully connected p-spin
model by Gardner [19] after a proper rescaling of the
coupling.

Three-spin
k 1 1 egs enum

gs y�

1–3 2�k 1 1��3 `

4 21.217 71 21.218�6� 1.411 55
5 21.394 92 21.395�7� 1.095 72
6 21.544 14 21.544�9� 0.901 63

Bicoloring
k 1 1 egs y�

1–6 0 `

7 0.003 711 1.966 11
8 0.027 383 1.171 18
9 0.058 131 0.928 87

10 0.093 181 0.787 46
11 0.131 392 0.693 15
12 0.172 118 0.553 38
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In the case of models defined over nonhomogeneous
graphs the ansatz can be used to obtain approximate or, in
some cases, exact variational estimates of the thermody-
namic functions. We have considered three representative
cases: the three-spin model and the Bicoloring problem
over random hypergraphs with a Poisson distribution of
site connectivities, and the random 3-SAT problem.

For the three-spin model we obtained estimates of the
dynamical and static critical points looking at the configu-
rational entropy. It has been shown in [12] that in this
model the GS are clustered. Given a GS there is an expo-
nential number of other GS which can be reached through
GS paths where subsequent GS differ only by a finite num-
ber of spin flips. For small average connectivity there is
a unique cluster, while above a threshold gd the num-
ber of disconnected clusters become exponentially large.
The configurational entropy is the logarithm of the num-
ber of clusters per spin, and can be computed in the replica
1RSB formalism as S�g� �

≠f
≠m jm�1 [20]. S�g� jumps to

a nonzero value at the dynamical critical point gd , and then
it vanishes again at the static critical point gs. Using argu-
ments put forward in [21], one can show [17] that, due to
the triviality of the paramagnetic phase of the model [12],
where P�h� � d�h�, the factorized ansatz (4) yields the
exact result. The resulting expression reads

S�g� � ln�2� �r 2 3gr2�1 2 r� 2 gr3� , (8)

with r solving the m � 1 saddle-point equation 1 2 r �
exp�23gr2�. The above expression is different from zero
between gd � 0.818 and gs � 0.918 (see bold line in
Fig. 1) where it equals the difference between the para-
magnetic and the ferromagnetic entropies [12]. The above
critical points coincide with numerical estimates [12].

In this model the static RSB transition point gs coin-
cides with the critical point gc beyond which the system
becomes frustrated; that is, no longer can all interactions
be satisfied at the same time, and therefore the GS
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FIG. 1. Ground states configurational entropy versus mean
connectivity for the three-spin model. The results of numeri-
cal clustering with an overlap cutoff of 0.7 (averaged over
1000, 1000, 500, and 50 samples) converge to the analytical
prediction.
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energy becomes positive [12]. In computer science this
point is known as the SAT/UNSAT critical threshold:
gc � gs � 0.918 thus provides the critical threshold
for random 3-XOR-SAT, in perfect agreement with the
numerical estimation [12].

Above gs the factorized ansatz ceases to be exact and
can be used only at a variational level.

In order to check numerically Eq. (8), we have per-
formed a GS clustering. This task is in general very hard
due to the large number of GS and because of the lack of
a proper definition of clusters in finite size systems. How-
ever, in this model calculations are easier, thanks to the
presence of only two relevant overlaps between GS: The
internal overlap equals r and is always larger than 0.7,
while different clusters are almost orthogonal. This leads
to an optimal cutoff of 0.7 for the numerical identification
of clusters. The results shown in Fig. 1 are in remarkable
agreement with the analytical curve.

Finally, in models where the configurational entropy is
likely to be zero and correlation among clusters is stronger,
like Bicoloring over fluctuating degree random graphs and
3-SAT [22], the dynamic and static critical points coin-
cide (gd � gs) and precede the SAT/UNSAT critical point
gc (usually called ac). Though less effective, the factor-
ized ansatz with integer valued fields still provides an es-
timate for gc [23]. Namely, gvar

c � 4.3962 for 3-SAT and
gvar
c � 2.149 for Bicoloring, which improve present rig-

orous bounds (recently reviewed in [24]).
To summarize, we have studied a factorization ansatz

which allows us to solve exactly diluted spin-glass and op-
timization models, on homogeneous hypergraphs. These
analytical results can play a crucial role in testing con-
vergence of heuristic algorithms. For nonhomogeneous
graphs the ansatz still allows one to get very good results
(some of them exact) as we have shown for the p-spin,
the Bicoloring, and the 3-SAT problems. Encouraged by
the recent rigorous results obtained on simpler models in
[25,26], we trust that an alternative and mathematically
rigorous derivation of our results may be possible.

We thank M. Mézard, G. Parisi, and M. Weigt for several
useful discussions.
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