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We analyze the high-temperature electron paramagnetic resonance (EPR) absorption in a weakly
anisotropic Heisenberg magnet having two distinct types of anisotropy, represented, respectively, by
a symmetric term and the Dzyaloshinskii-Moriya (DM) term. Contrary to the widespread opinion that
the latter is responsible for the excessive linewidth observed in the EPR spectra of many oxides, we prove
that its contribution to the linewidth is only of the same level as that of the symmetric anisotropy. This
gives a solution to the long-standing controversial problem of the high-temperature magnetic relaxation
in quantum-spin systems with the DM interaction.
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The electron paramagnetic resonance (EPR) technique
is known to be a very powerful and useful tool in prob-
ing the magnetic interactions in solids. Recently, due to
growing interest in quantum-spin systems, many of the
well-known 1D compounds such as CuGeO3 and NaV2O5
have been the subject of intensive investigations by this
method [1–14]. However, a clear lack of a comprehensive
EPR theory, as far as low-dimensional compounds are con-
cerned, often makes the interpretation of the experimen-
tal data somewhat difficult. Paradoxically, the theoretical
situation is more developed at low than at high tempera-
tures. Very recently, Oshikawa and Affleck [15] proposed
a new approach to the low-T EPR based on the bosoniza-
tion and the Feynman-Dyson self-energy formalism. This
paved the way to a new interpretation of the old EPR data
obtained on 1D antiferromagnet (AFM) copper benzoate.
As for the high-T EPR theory, the pioneering work of
Kubo and Tomita [16], further developed by Mori [17],
remains the most used at present.

In an EPR experiment, the magnetic field is applied
in, say, the z direction, H0z, and the microwave field
h�t�x is perpendicular to it. If the spin Hamiltonian H

contains only two terms —the Zeeman interaction HZ �
v0Sz �v0 � H0� and the exchange energy Hex �
SJSlSl11—then, in the absence of anisotropy (H 0 � 0),
the spin dynamics would be described by only one mode
S1 � �S2�1 : i �S1 � 2v0S1. The spins precess around
H0 with the Larmor frequency, and the uniform mi-
crowave field h�t� acting on S1�S2� causes a microwave
absorption. It is easy to see that, in this particular case,
the EPR signal is simply a sum of two nonshifted delta
functions d�v 6 v0�. This fact is often used as the
starting point of an EPR theory. It shows also that the line
broadening and the line shift are both due to the magnetic
anisotropy. If now H 0 fi 0 and H 0 ø Hex , then the
fluctuating torques are also nonzero, �S1,H 0� fi 0, and
the S1 mode gains a finite width. The Kubo theory
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predicts, in this case, a Lorentzian shape of the absorption,
with a linewidth Dv � Re

R`

0 c�t� dt, where c�t� �
��H 0, S1� �t�, �S2 ,H 0����S1,S2� is a sum of four-spin
correlation functions called the memory function. Gener-
ally, c�t� is difficult to calculate, and, thus, one is forced
to make some assumptions concerning its behavior. In
the exchange narrowing regime, c�t� is assumed to have
a simple form, c�t� � m2d�t��J [16], resulting in a
linewidth Dv � m2�J where m2 is the second moment
of the absorption signal.

When the anisotropy is defined mostly by the sym-
metric quadratic form dSa

l Sa
l11, which represents the

dipole-dipole or/and anisotropic exchange interactions, the
situation has already been widely discussed in the case of
low-dimensional magnets in the early 1970s. The experi-
mental results on TMMC, CMC, and other 1D spin-5�2
Heisenberg AFM have been successfully interpreted in
the framework of the Kubo approach modified by the
spin-diffusion concept [18].

It appears, however, that the magnetic relaxation in
new spin-1�2 oxides is a more complicated matter. One
of the reasons is that these systems are not made of S
ions, as in the case of TMMC. Thus, the terms such as
the Dzyaloshinskii-Moriya (DM) interaction, D ? �Sl 3

Sl11�, should be taken into account.
Starting from the first EPR experiments on CuGeO3 and

NaV2O5, a considerable linewidth, Dv, much larger than
one can expect from the Kubo formula supposing only the
symmetric term Dv � m2d�J � d2�J, has been observed
at high temperatures. This was then explained by Yamada
et al. [14] who argued that, if one takes standard estimates
for the DM term, D � �Dg�g�J, and the symmetric one,
d � �Dg�g�2J (where g and Dg are the g factor and its
anisotropy, respectively), then the DM term gives a major
contribution to the observed linewidth Dv � m2D�J �
D2�J. Notice, however, that the existence of the DM
interaction in the spin Hamiltonian of these compounds
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is still the subject of considerable controversy (see, for
example, [13]).

As we show in this Letter, the theory of exchange nar-
rowing is utterly inadequate for describing the DM effects
on the EPR line shape. Indeed, if one considers the most
interesting case of a spin chain with a staggered DM term
such that the orientation of the DM vector is site depen-
dent, Dl � �21�lD, then, with the help of the relation

�Sa,HD� � 2�1�2J�Dc´acd�Sd
p ,Hex� , (1)

it can be shown that c�t� is driven exclusively by the
staggered fluctuations, cD�t� � �d2�dt2� �S1

p �t�, S2
p �, and

the resulting linewidth is simply zero up to second order
of D�J

Dv � Re
Z `

0
cD�t� dt � 0 , (2)

while the exchange narrowing formula gives Dv � D2�J
[14]. Therefore, it remains a challenging problem to elu-
cidate the role that the DM interaction plays in the EPR
absorption without making any assumption about the mem-
ory function behavior.

In this Letter we realize this program. First, using a
unitary transformation, we map the initial chain onto an
anisotropic Heisenberg XXZ chain. Then, after evaluat-
ing the EPR absorption, we conclude that the effective
magnetic anisotropy can always be presented in the form
d̃ # d 2 D2��2J�. Hence, the DM interaction contributes
to Dv at a level of the symmetric anisotropy. On the other
hand, computing the linewidth perturbatively up to second
order of D�J, we show that the width appears only in the
next order of the perturbation, Dv � �D2�J� �D2�J2�.

Let us start to treat the DM problem by performing a
unitary transformation in such a way that the transformed
Hamiltonian contains only a symmetric anisotropy of order
D2�J [19]. We shall see that the DM contribution to the
linewidth is then much simpler to analyze.

We consider the following spin chain Hamiltonian:

H �
X

l

�JSlSl11 1 �21�lSl ? T̂1 ? Sl11

1 Sl ? T̂2 ? Sl11� , (3)

where Tab
1 � D´abcyc corresponds to the DM interaction

(with a, b, c � x, y,z), while Tab
2 � d�yayb 2

1
3 dab� is

a symmetric anisotropy of strength d, the anisotropy di-
rection being given by the unit vector v. The Hamiltonian
can be cast under the form

H �
X

l even

Sl ? T̂ ? �Sl11 1 Sl21� , (4)

with T̂ 5 1̂ ? J 1 T̂1 1 T̂2. Such a T matrix is decom-
posed in its polar form,

T̂ � RM̂ , (5)

where R is a rotation given by
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Rab � yayb 1 cosw�dab 2 yayb� 1 sinw´abcyc,

with cosw � 1�
p

1 1 D�2 and D� � D��J 2 d�3�,
while M̂ is the symmetric matrix

Mab �

µ
J 1

2d

3

∂
yayb 1

sµ
J 2

d

3

∂2

1 D2

3 �dab 2 yayb� .

Inserting the decomposition (5) into (4) and performing
the canonical transformation U defined by

USlU1 � RSl , for l even ,

USlU1 � Sl , for l odd ,
(6)

one then obtains a transformed Hamiltonian H̃ �
UH U1 given by

H̃ �
X

l

Sl ? M̂ ? Sl11 .

This Hamiltonian corresponds to a system with a symmet-
ric anisotropy of strength d̃. In the particular case d̃ � 0,
we end up with a transformed Hamiltonian without any
anisotropy. Notice that, when defining (6), we supposed
that v is arbitrarily oriented with respect to the magnetic
field H0. Therefore, the unitary transformation (6) is an
extension of the one presented in [19] and appears to be
very useful in the angular dependence analysis of EPR ab-
sorption spectra.

The EPR absorption, within the Mori formalism [17], is
given by

I�v� ~ bv2Im

ø
Sx,

1
v 2 LH 2 LZ

Sx

¿
H 1HZ

, (7)

LH and LZ being the Liouville operators associated
with H and HZ , respectively, and �A, B� �

R1
0 dx 3

�Ae2xbHBexbH�H . In order to simplify the discussion,
we assume that the applied magnetic field H0 is in
the anisotropy direction v, say the z direction. So, by
introducing the canonical transformation and noticing
that the Zeeman Hamiltonian is invariant under this
transformation, one is led to

I�v� �
1 1 cosw

2
Ĩ�0, v� 1

1 2 cosw
2

Ĩ�p, v� , (8)

where Ĩ�q, v� is defined as

Ĩ�q, v� ~ bv2Im

ø
Sx

q ,
1

v 2 LH̃ 2 LZ
Sx

2q

¿
H̃ 1HZ

.

We readily see that the EPR absorption we are computing
is essentially given by the absorption at q � 0 of the trans-
formed system which contains a symmetric anisotropy d̃.
To be more specific, let us consider the particular case d̃ �
0. Then the transformed system is isotropic (H̃ � Hex),
and we know that Hex 1 HZ possesses a proper mode
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S1. By the inverse transformation, we deduce that the
original system (H 1 HZ� has also a proper mode Sn:

Sn �
1
2 �eiw 1 1�S1 2

1
2 �eiw 2 1�S1

p ,

which is, of course, mainly the S1 mode. Therefore, one
has also to introduce another mode,
127207-3
Sb �
1
2 �eiw 2 1�S1 1

1
2 �eiw 1 1�S1

p ,

which is mainly the S1
p mode. Since the Sn mode is a

proper one, it will give a Dirac peak in the EPR signal,
while the Sb mode, which is not a proper one, will give
a signal which is strongly temperature dependent. That
explains why the EPR absorption (8) is given by
I�v� ~ bv2

Ω
1 1 cosw

2
p

4
�d�v 2 v0� 1 d�v 1 v0��s12

2
1 2 cosw

8
Im�S12�p, v 2 v0� 1 S21�p, v 1 v0��

æ
, (9)
where s12 � �S1, S2�Hex1HZ is the static correlation
function and S12�p, v� is the dynamic correlation func-
tion governed by the sum Hex 1 HZ. We see that the
main term is the first one, corresponding to the response of
an isotropic system, while the second one, with the weight
��D�J�2, is essentially constant for v 6 v0 ø J, as it
has been emphasized in [20]. As a result, the system be-
haves then essentially as an isotropic one. In the more
general case (d̃ � D2�J), again the EPR absorption I�v�
is essentially driven by the absorption Ĩ�v� of a system
with a symmetric anisotropy of strength D2�J. Hence, we
see that the Dzyaloshinskii-Moriya interaction cannot lead
to a linewidth much larger than the linewidth one would
get with a symmetric anisotropy. On the contrary, we have
proven that they are of the same order of magnitude.

One also should note that Eq. (9) illustrates a remarkable
difference between the symmetric and the DM anisotropies
as regards the spin dynamics. It is clear from (9) that in
the presence of the DM interaction the spin dynamics of
a weakly anisotropic Heisenberg magnet is governed by
two modes. The uniform microwave field h�t� acts on a
uniform variable S1�t� but, through the DM term, it ap-
pears to be coupled to the staggered one S1

p �t�. If now
one would like to estimate the linewidth of the above two
modes by the method of moments, the Sn and Sb op-
erators should be used instead of S1 and S1

p . Specifi-
cally, the second moment of the Sn mode is given by
m2Sn � Tr�Sn,H �2�TrS2

n # d̃2 and, quite in a similar
manner, m2Sb � Tr�Sb,H �2�TrS2

b # J2. These results
are in agreement with the above made estimates.

It is then worthwhile comparing the exact results with
the usual approach for a pure DM interaction. Let us
recall that the EPR absorption (7) at high temperature takes
the form

I�v� ~ bv2 Im

Ω
1

v 1 v0 2 G21�v�

1
1

v 2 v0 2 G12�v�

æ
,

where G12�v� ���G21�v���� is the self-energy (or the mem-
ory spectrum). Again, for the sake of simplicity, we con-
sider the case where H0 and D are both in the z direction
and we neglect a small shift of the resonance frequency
v0. As usual, the self-energy, G12�v� � g12�v��s12,
which is the Laplace transform of the memory function
ic�t�, is evaluated up to second order of perturbation the-
ory, leading to

g12�v� �

ø
A1,

1
v 2 LHex

2 LZ 1 i´
A2

¿
Hex

, (10)

where Aa � 2i�Sa,HD� is quadratic in the spin opera-
tors, making g12�v� a four-spin correlation function. The
standard evaluation of such a function consists of a de-
coupling procedure expressing g12�t� as the product of
two-spin correlation functions for which some exponential
decay behavior is made. Computing Aa by the use of (1)
and inserting this result into (10), we arrive at one of the
most significant of our conclusions, that the self-energy
G12�v�, in the case of the DM interaction, depends on
the unique dynamic two-spin correlation function,

G�v� �

ø
S1

p ,
L2
Hex

v 2 LHex 1 i´
S2

p

¿
Hex

,

which reduces to G�v� � 2vs12 1 v2S12�p, v�.
The “static part” of g12�v� � �D�2J�2G�v��2 will
produce a shift in the resonance frequency, while the
dynamic part is essentially purely imaginary and there-
fore responsible for the linewidth. If the EPR signal is
supposed to be a Lorentzian, then, in accordance with (2),
one obtains Dv � ImG12�0� � 0 up to second order
of D�J. However, the linewidth can be approximately
defined as �D2�J� ? �D2�J2�, which is of the order of a
symmetric anisotropy, in agreement with the exact result
(9). This result is worthy of further comments. First,
it clearly shows how dangerous is the above-mentioned
decoupling procedure for c�t�, since it leads to a finite
density of the memory spectrum G12�v ! 0� � m2�J.
Second, it rules out completely the possibility of spin dif-
fusion, or more generally the possibility of the power-law
long-time behavior of c�t�, when the magnetic relaxation
is purely governed by the DM interaction. As we have
already pointed out, G12�v�, in this case, is driven
exclusively by the staggered spin fluctuations, so that
ImG12�v� � G�v� � v2S12�p, v�. Using the results
of [20], one can safely conclude that S12�p, v ! 0� is
finite at high T , indicating that c�t� decays quite rapidly,
on the scale of t � 1�J. This differs fundamentally
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from the long-time behavior of c�t� � t2a suggested
in the case of the symmetric anisotropy [18]. Third,
although our results, obtained by a perturbation theory,
concern a pure DM anisotropy, it is easy to check that,
in a more general case (when d fi 0), we again arrive
at the conclusion that if d 	 D2��2J� then d̃ � 0 and
the system behaves as an isotropic one with Dv � 0.
This situation (d̃ � 0) which, at first sight, seems totally
artificial, holds, in fact, as it was pointed out by Kaplan,
Shekhtman, Entin-Wohlman, and Aharony (KSEA) [21],
for a very wide class of spin-1�2 1D and 2D cuprates.
KSEA have shown, on rather general grounds, that in these
materials the symmetric term d is always accompanied
by the DM anisotropy D leading to an isotropic behavior
d̃ � 0. Recently, the KSEA predictions have been
established experimentally in various studies, including
the ESR measurements on the spin-1�2 2D tetragonal
cuprate Sr2CuO2Cl2 [22]. Since our conclusions for
d̃ � 0 remain also valid in 2D magnets at moderate
temperatures, it is interesting to note that the experimental
linewidth in Sr2CuO2Cl2 at T � 70 K is surprisingly
small, Dv�J 	 2 3 1025, as compared with the estimate
Dv�J � �D�J�2 	 1022. We speculate therefore that
this is a first but clear experimental evidence in favor of
our predictions.

In conclusion, we have shown that, contrary to what is
usually suggested in the literature, the DM interaction can-
not be at the origin of the excessive linewidth observed in
the ESR spectra of many oxides. Its contribution is of the
same order as that of the symmetric anisotropy. In the case
of an exact compensation (d̃ � 0), the system behaves as
an isotropic one. Although we do not offer an explanation
for the large linewidth in CuGeO3 and NaV2O5, our results
clearly suggest that a revision of the previous experimental
studies is needed. Finally, the memory function can be ex-
pressed in terms of a unique two-spin correlation function.
This rules out the spin diffusion scenario in the case of a
pure DM anisotropy.
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