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Field penetration profiles in type-II superconductors with nonparallel vortex configurations are ob-
tained by a proposed least action principle. We introduce a functional C � �H� which is minimized for
the current density constrained by �J [ D� �H, �x�, where D is a bounded set. Within the isotropic case
j�Jj # Jc�H�, the profiles �H��x, t� are derived for an applied changing excitation. The model can re-
produce the physical phenomena of flux transport and consumption, and the magnetization collapse in
crossed field measurements.
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The magnetization curve of type-II superconductors
may display physical properties against the expectations
of equilibrium thermodynamics for these materials, such
as the existence of hysteresis and positive magnetic
moment. The critical state model (CSM), which dates
back to the work by Bean [1], has been an essential
phenomenological framework for the interpretation of
the aforementioned experimental facts. The following
prescription was given: External field variations are
opposed by the maximum current density Jc within the
material. After the changes occur, Jc persists in those
regions which have been affected by an electric field.

Currently, the irreversible properties of superconductors
are well understood in terms of the vortex flux line lat-
tice (FLL) dynamics in the presence of pinning centers.
Within the framework of self-organized extended dynami-
cal systems one can conceive the CSM as the competition
between a repulsive vortex-vortex interaction and attrac-
tive forces towards the pinning centers [2]. This results
in metastable equilibrium states for which the gradient in
the density of vortices is maximum, corresponding to the
critical value for the macroscopic current density Jc. At
the macroscopic level, one usually makes the assumption
that the rearrangement to new equilibrium states is instan-
taneous whenever the system is perturbed. As a matter of
fact, when the FLL is unpinned by an external drive, a dif-
fusion process is initiated, which is characterized by a time
constant tf � m0L2�rf (rf stands for the flux flow resis-
tivity and L is some typical length of the sample). Thus,
the previous hypothesis corresponds to neglecting tf as
compared to the excitation typical period.

A serious limitation of Bean’s model is that one can
just apply it to lattices of parallel flux tubes. However, a
wealth of experimental phenomena are related to interac-
tions between twisted flux lines. Macroscopically, if vor-
tex crossing is present, �J develops full vectorial character
and the condition j �Jj � Jc (or 0) does not suffice. To the
moment, several phenomenological theories are at hand,
which allow one to deal with such cases. Among them
we want to detail the work by Clem and Pérez-González
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[3]. These authors have developed a model [double criti-
cal state model (DCSM) in what follows] which includes
current density components perpendicular and parallel to
the local magnetic induction �B. Their corresponding criti-
cal values Jc� and Jck are, respectively, associated with
depinning and flux-cutting phenomena. Metastable distri-
butions of �B are obtained by the critical-state principles
jJ�j # Jc�, jJkj # Jck, and the Maxwell equations. Fi-
nite element based models are also available [4], which
allow one to compute the critical state profiles for non-
ideal geometries.

Here we will show that Bean’s simplest concept of op-
posing external field variations with the maximum current
density is still valid for multicomponent situations; the
sign selection for one dimensional problems will become
a particular case of finding the adequate direction of �J by
way of a minimum principle. Variational approaches based
on the minimization of the free energy for calculating the
magnetic properties of type-II superconductors have been
applied before. In Ref. [5] a numerical method is pre-
sented which allows computing the current distribution for
the Meissner state in finite cylinders. Also, in a previ-
ous work [6] we showed that a powerful generalization
of variational calculus, the optimal control (OC) theory
[7], provides a very convenient mathematical framework
for critical-state problems in superconductors. In Ref. [6],
the magnetostatic energy was minimized under the restric-
tion j �Jj # Jc. That principle may be applied only to the
initial magnetization curve, as hysteretic losses cannot be
accounted for by a thermodynamic equilibrium model.
Nevertheless, it was suggested that a functional, most prob-
ably related to changes in the magnetic field vector should
allow one to include irreversibility. Such a variational
quantity is described in this Letter. The theory will be
applied to the experiments of a superconductor in rotat-
ing magnetic fields [8] and the magnetization collapse in
crossed field measurements [9].

The basic relations of coarse-grained electrodynamics
in the case of type-II superconductors read as follows.
As time-dependent phenomena are involved, one must
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incorporate Faraday’s law m0≠t
�H � 2= 3 �E (we have

used �B � m0
�H, which means that reversible magnetiza-

tion is neglected in this work), as well as an appropriate
�E� �J� characteristic for the superconductor, where �J is to
be obtained from Ampère’s law = 3 �H � �J.

In order to gain physical insight, we will infer the CSM
equations after considering some aspects of the more fa-
miliar eddy-current problem in normal metals � �E � r �J�.
Assuming a discretization scheme in which �Hn stands for
the magnetic field intensity at the time layer ndt, the suc-
cessive field profiles in a magnetic diffusion process may
be obtained by the finite-difference expression m0� �Hn11 2
�Hn��dt � 2r= 3 �= 3 �Hn11�. This defines a differen-

tial equation for �Hn11. Notice that for each step one can
identify it as the stationarity condition for the functional

CM � �Hn11� � m0

Z
V

j �Hn11 2 �Hnj
2 1 dt

Z
V

�E ? �J

�
Z

V

Fn11 ,

where V stands for the sample’s volume and the de-
pendence of the second term on �Hn11 is implicitly
assumed. In fact, the Euler-Lagrange equations which
describe the stationarity of CM , i.e., ≠Fn11�≠Hn11,i �
≠xj �≠Fn11�≠�≠xj Hn11,i�� can be checked to produce
the aforementioned expression. By using CM , we
get a clear physical picture of the underlying series
of quasistationary processes. Notice that CM holds a
compensation between a screening term and an entropy
production term. In fact, under isothermal conditions
one has �S � �E ? �J�T . Thus, a perfect conductor would
correspond to the limit �S ! 0 ) �Hn11 ! �Hn. On the
opposite side, nonconducting media would not allow the
existence of screening currents (otherwise �S ! `) and,
thus, �Hn11 will be solely determined by the external
source. In the case of type-II superconductors, the critical
state arises from the flux flow characteristic, which, in
the isotropic case, can be written as E � rf�J 2 Jc�
(or 0 if J , Jc). Thus, the external drive variations are
followed by diffusion towards equilibrium critical profiles
in which J equals Jc. If the relaxation time tf may be
neglected (or equivalently rf ! `), the superconductor
will behave as a perfect conductor for J # Jc and as a
nonconducting medium for J . Jc. In the light of the
previous discussion, the evolutionary critical state profiles
can be obtained by using either the Maxwell equations and
a vertical E�J� law or the following principle: In a type-II
superconducting sample V with an initial field profile �Hn

and under a small change of the external drive, the new
profile �Hn11 minimizes the functional

C � �Hn11��x�� �
1
2

Z
V

j �Hn11 2 �Hnj
2,

for the boundary conditions imposed by the external
source, and the constraint = 3 �Hn11 [ D� �Hn11, �x�.

Hereafter, we will use the isotropic hypothesis j= 3
�Hn11j # Jc�j �Hn11j�, i.e., D is a disk. This will provide
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a nice agreement between our simulations and the experi-
mental facts. However, anisotropy can easily be incorpo-
rated, for instance, by choosing D to be an ellipse or a
rectangle (DCSM case) oriented over selected axes. Al-
though isotropy would not seem to be justified according
to the underlying physical mechanisms of flux depinning
�Jc�� and cutting �Jck�, it may be supported by other rea-
sons. In fact, an average description seems adequate for
twisted soft FLLs. In this case, flux cutting phenomena are
much more effective than for rotating rigid parallel sublat-
tices [10].

In order to see how the OC machinery arises, let us con-
sider an infinite slab of thickness 2a in a field parallel to
the faces (YZ plane) and take the origin of coordinates at
the midplane. By virtue of the symmetry, we can restrict
to the interval 0 # x # a. Along this work, we will use a
Kim’s model type [11] dependence of the critical current
density Jc�H� � Jc0��1 1 H�H0�, which incorporates the
microstructure dependent parameters Jc0 and H0. For con-
venience we will express x in units of a, H in units of H0,
and J in units of H0�a. Then we can state Ampère’s law,
together with the critical current restriction, as

d �Hn11

dx
� �f� �Hn11, �u, x� �

b �u

1 1 j �Hn11j
.

Above we have introduced the dimensionless constant
b � Jc0 a�H0 and the so-called control variable �u,
which is a vector within the unit disk D. Notice that, by
construction, one has �u � �J. Thus, we have the state
equations for the state variables �Hn11�x�.

Next, we require the minimization of the functional
C � �Hn11�x�� constrained by the state equations. Just in the
manner of Ref. [6], Pontryagin’s maximum principle can
be used to solve the OC problem. On defining the associ-
ated Hamiltonian

H � �p ? �f 2
1
2

� �Hn11 2 �Hn�2,

the optimal solution [i.e., functions �H�
n11�x� and �u��x�

minimizing C and satisfying the state equations] fulfills
the Hamiltonian equations

dH�
n11,i

dx
� fi ,

dp�
i

dx
� H�

n11,i 2 Hn,i 2 p�
j

≠fj

≠H�
n11,i

,

together with the maximum principle condition

H � �H�
n11, �p�, �u�� � max

�u[D
H � �H�

n11, �p�, �u� .

Then, the control variables must take the form �u� �
�p��p�, and this leads to the system

dH�
n11,i

dx
�

p�
i

p�

b

1 1 H�
n11

(1a)

dp�
i

dx
� H�

n11,i 2 Hn,i 1
bp�H�

n11,i

H�
n11�1 1 H�

n11�2
. (1b)

A part of the boundary conditions required to solve this
system is given by the external field values at the surface
127004-2
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�H�
n11�1� � �H�1, �n 1 1�dt�. The rest will be supplied, at

every instant, according to the particular situation: (i) If
the new profile matches the old one at a point 0 , x� , 1,
i.e., �H�

n11�x�� � �Hn�x��, these are the extra boundary con-
ditions. x� can be determined by additional equations de-
rived from the minimum cost requirement. In fact, one
can prove that a free final parameter x� leads to the alge-
braic condition H �x�� � 0. (ii) If the new profile holds a
variation which reaches the center of the slab, the full ar-
bitrariness of �H�

n11�0� supplies the so-called transversality
conditions for the momenta: �p��0� � 0.

Notice that the physical counterpart of the result
j �u��x�j � 1 is j �Jj � Jc�H�. We should emphasize that
this condition and the distribution rule for the components
of �J are determined by the selection of the control space
D. For instance, j �Jj is no more fixed when D is a rect-
angle. Instead, the optimality produces a vector leaning
on the boundary, matching the evolution predicted by the
DCSM.

Eventually, the critical state profiles will be solved by
integration of the set of Eqs. (1). Below, we apply the
method to the rotating and crossed field experiments. For
definiteness, we choose b � 1.

First, we consider the solutions for �H�
n11 in a field

cooled sample, which is subsequently subjected to a
surface field rotation �HS�t� � HS�0, sinaS , cosaS�, where
aS � vt. On neglecting the equilibrium magnetization,
the slab holds a nonmagnetic initial profile �0, 0, HS�.
Successive penetration profiles were obtained by means
of Eqs. (1). Figure 1 displays the main features of the
calculated magnetization process. During the initial stages
of rotation the magnitude of H is decreased towards
the center of the slab in a flux consumption regime.
Simultaneously, the angle of rotation a with respect
to �HS�0� follows a quasilinear penetration profile. As
rotation is continued, the field modulus penetration curve
develops a V shape, which neatly defines a decoupling
point x0. Thereafter, the curve essentially freezes and
the flux density modulus becomes stationary. On the
other hand, the rotation angle variation is blocked in the
range 0 # x # x0. Further changes of �HS will affect
only a�x� for x0 # x # 1. In particular, after decoupling
occurs, the external drive variations induce a conventional
critical state behavior for the profile a�x�. For instance,
one can observe the expected effect of rotation reversal
after one turn is completed (see the inset in the lower
panel). Eventually, the outer region will be responsible
for the hysteretic losses as the inner part contains an inert
magnetic flux density distribution.

The phenomenological matters described above have
been experimentally observed by Cave and LeBlanc [8]
and reported by Clem and Pérez-González [3] from the
theoretical point of view. However, we want to remark
that the DCSM model contains critical slopes for the field
modulus and rotation angle, and the appearance of a decou-
pling point is somehow forced. Our variational principle
127004-3
FIG. 1. Magnetic field penetration profiles for a field cooled
slab under successive rotation steps for the surface vector �HS .
(a) The modulus consumption towards the center of the slab
(x � 0). (b) The rotation angle a with respect to the initial
constant profile. The inset shows the calculated angle profiles
upon rotation reversal. H has been used in units of H0, x in
units of a, and a is given in radians.

allows showing that, even for the isotropic hypothesis, in
which no such a priori condition is introduced, the opti-
mal process itself produces the actual current distribution
and generates decoupling. Thus, the behavior observed in
Fig. 1 is more related to the imposed boundary conditions
than to the particular region D in use.

Next, we concentrate on the so-called magnetization
collapse, which can be observed in crossed field measure-
ments. Reference [9] displays a remarkable manifestation
of this effect in high Tc superconductors. We have calcu-
lated the field penetration profiles for a zero field cooled
sample to which a constant excitation HzS is then ap-
plied. This is followed by cycling stages of the other field
component on the surface HyS. Figure 2 shows the pre-
dicted magnetization curves. As usual, we have defined
�M � � �H�x�	 2 �HS . The major loop (sequence OABC )

displays the observed experimental features: (i) My fol-
lows a nearly conventional CSM profile, except for the
fact that the loop is not closed (see A and C ). (ii) Mz

irreversibly collapses as HyS is cycled. Both effects may
be easily explained in terms of the predicted penetration
127004-3
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FIG. 2. Evolution of the magnetization components in a simu-
lated crossed field experiment for a zero field cooled supercon-
ducting slab. Subsequent to the application of a constant surface
field HzS , the other component HyS was cycled either in a ma-
jor loop (sequence OABC ) or minor loop. Several magnetic
field profiles, corresponding to the magnetization process, have
been included in the insets. Full symbols have been used for
the curves corresponding to the points A and B, continuous lines
for a selection of intermediate profiles, and dashed lines for the
initial steps in the branch B ! C. Hy is plotted within the axis
range �20.6, 0.6�, Hz within (0.25, 0.65), and x for (0, 1). All
the quantities are in dimensionless units as defined in the text.

profiles. In the insets we show the evolution correspond-
ing to the branch A ! B. For illustration, we have also
included a few profiles associated with the first field rever-
sal steps in the branch B ! C. Notice that Hy follows the
typical CSM pattern, whereas �Hz	 continuously increases.
Physically, this behavior must be related to the most effec-
tive mechanism for minimizing

R
j �Hn11 2 �Hnj

2 dx. The
current density component Jz dedicated to reduce the im-
posed field variation jHn11,y 2 Hn,y j

2 is privileged. Then
we have Jy 
 0 near the surface owing to the restriction
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on j �Jj, and this leads to the flattening of Hz . We have
also simulated a minor loop, which corresponds to a par-
tial penetration regime. It is noteworthy that quite different
behaviors can be observed depending on the applied field
amplitudes.

In summary, we have presented a phenomenological
critical state model that generalizes the minimal tool
proposed by Bean to systems of twisted vortex con-
figurations. Our theory may be used to understand
the experimental features of rotating field experiments.
Within the isotropic hypothesis, the model also provides a
straightforward explanation of the observed magnetization
collapse, for which a merely approximate justification was
available [12]. The theory allows a number of extensions
if dictated by the physics of the problem. These include
the effect of equilibrium magnetization by means of an
appropriate B�H� relation, the selection of the model
Jc�H�, and the use of anisotropic control spaces. Another
important issue would be the incorporation of time
relaxation effects by means of a finite flux flow resistivity.
This can be accomplished by using the entropy production
term �E ? � �J 2 �Jc� in the functional.
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