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Strong Enhancement of Superconducting Tc in Ferromagnetic Phases
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It is shown that the critical temperature for spin-triplet, p-wave superconductivity mediated by spin
fluctuations is generically much higher in a Heisenberg ferromagnetic phase than in a paramagnetic
one, due to the coupling of the magnons to the longitudinal magnetic susceptibility. Together with the
tendency of the low-temperature ferromagnetic transition in very clean Heisenberg magnets to be of first
order, this qualitatively explains the phase diagram recently observed in UGe2.
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It has long been known that, in principle, the exchange
of magnetic fluctuations between electrons can induce su-
perconductivity [1]. Magnetic fluctuations become large
in the vicinity of continuous magnetic phase transitions,
which make nearly ferromagnetic materials, or ferromag-
nets with a low Curie temperature, natural candidates for
this phenomenon. In contrast to the much more common
phonon-exchange case, which usually leads to electron
pairing of spin-singlet, s-wave nature, the magnetically
mediated pairing is strongest in the spin-triplet, p-wave
channel. p-wave superconductivity is very sensitive to
nonmagnetic impurities and therefore can be expected only
in extremely pure samples. The combined requirements of
high purity, low temperatures, and vicinity to a ferromag-
netic transition severely restrict the number of promising
materials. Indeed, until recently there were no convincing
simple examples of magnetically induced superconductiv-
ity, and the paramagnon interpretation of superfluid 3He
[1,2] was considered the best example of pairing by ex-
change of magnetic fluctuations.

This situation has recently changed, due to the obser-
vation of the coexistence of ferromagnetism and super-
conductivity in UGe2 [3]. In contrast to other uranium
compounds, UGe2 has more in common with classic
d-electron ferromagnets, like Fe, Co, and Ni, than with
heavy-fermion systems. The persistence of ferromagnetic
order within the superconducting phase has been ascer-
tained by means of neutron scattering, and the itinerant
ferromagnetism and the superconductivity are believed to
arise from the same electrons [3]. Since superconductivity
in the presence of ferromagnetism must be of spin-triplet
type, magnetically induced pairing is an obvious candidate
for the observed superconductivity, although a phonon
mechanism has also been proposed [4].

The nature of the phase diagram reported in Ref. [3]
is, however, not obviously consistent with existing models
of spin fluctuation induced superconductivity; see Fig. 1.
Fay and Appel [5] have calculated the superconducting Tc

for a p-wave, equal-spin pairing state in both the para-
magnetic (PM) and ferromagnetic (FM) phases close to
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a continuous magnetic transition. Using a McMillan-type
formula, they found values of Tc on either side of the tran-
sition that are within 20% of one another. Their shape of
Tc as a function of the distance t from the magnetic tran-
sition is very similar to that obtained by Levin and Valls
[2], who solved the Eliashberg equations numerically in the
PM phase, although the absolute values of Tc are smaller in
the McMillan approximation. More recently, Roussev and
Millis [6] have obtained similar results in the PM phase.
Contrary to this theoretical expectation of a superconduct-
ing phase diagram that is roughly symmetrical with respect
to the magnetic phase boundary, Fig. 1(a), the authors of
Ref. [3] observed superconductivity at temperatures up to
about 500 mK within the FM phase only, Fig. 1(b). Quali-
tatively the same phase diagram has very recently been ob-
served in ZrZn2 [7]. Since the spin fluctuations become
large on either side of the magnetic transition, it seems
hard to reconcile this experimental result with paramagnon
theory [8].

In this Letter we show that the observed phase diagram
can nevertheless be understood in these terms. The key
lies in the existence of spin waves or magnons in the FM
phase, which couple to the longitudinal susceptibility and
contribute a mode-mode coupling term to the latter that
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FIG. 1. Schematic phase diagram showing the paramagnetic
(PM), ferromagnetic (FM), and superconducting (SC) phases in
a temperature (T)-control parameter (CP) plane. (a) The quali-
tative prediction of paramagnon theory [5], and (b) the quali-
tative phase diagram as observed in UGe2 [3] and explained
by the theory presented here. In Ref. [3], hydrostatic pressure
serves as CP.
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has no analog in the PM phase. We will see that this
produces a superconducting transition temperature which
under reasonable assumptions can easily be 50 times larger
than in the PM phase.

We have included this effect in a McMillan-type Tc cal-
culation similar to the one in Ref. [5]. A representative
result of our analysis is shown in Fig. 2. The solid curve
(left-hand scale) represents the superconducting Tc as a
function of the dimensionless distance t from the FM criti-
cal point. Also shown is the magnetization M in the FM
phase, in units of the saturation magnetization mBn, with
n the electron number density and mB the Bohr magneton.
Tc is measured in units of a characteristic temperature T0
that is given by either the Fermi temperature or a band-
width, depending on the model considered. The dashed
curve shows the result in the PM phase scaled by a fac-
tor of 50 (right-hand scale), and the dotted curve in the
FM phase (also scaled by a factor of 50, right-hand scale)
represents the result that is obtained upon neglecting the
mode-mode coupling effect. Notice that the maximum Tc

in the FM phase is more than 50 times higher than in the
PM phase. This relative difference between Tc in the two
phases is the important result of our analysis. The absolute
values should not be taken very seriously, as calculating
Tc is notoriously difficult and our simple mean-field treat-
ment is certainly not adequate for this purpose. However,
the relative comparison we expect to be reliable. It predicts
a pronounced asymmetry between the PM and FM phases,
which in the case of UGe2 means that superconductivity
in the PM phase should not be expected at temperatures
above at most 10 mK, in agreement with the experiment.
Also of interest is the fact that at low temperatures the
FM transition in very clean itinerant Heisenberg systems
is generically of first order, as has been predicted theoreti-
cally [9] and is indeed observed in UGe2 [3] as well as in
MnSi [10]. For the purpose of our discussion this simply
means that values of jtj smaller than some minimum value
are not experimentally accessible.
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FIG. 2. Superconducting Tc (solid curve, left scale) as a func-
tion of the distance from the critical point t, and the magnetiza-
tion M . The dashed line (right scale) shows Tc in the PM phase
scaled by a factor of 50, and the dotted curve (right scale) is the
result in the FM phase without the mode-mode coupling effect.
See the text for further explanation.
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In the remainder of this Letter we sketch the theoreti-
cal analysis that has led to these results. For an order
parameter (OP) field, we choose F �x, y� � c"�x�c"�y�,
with cs�x� an electronic field with spin index s and
space-time index x [11]. The OP, i.e., the expectation value
�F �x, y�� � F�x 2 y�, is the anomalous Green function.
The orbital symmetry of the OP is still unspecified; we
will later choose the p-wave case.

We have derived coupled equations of motion for F and
the normal Green function, G, that lead to a loop expansion
for the equation of state [12]. Our model is a microscopic
action S with a free-electron part, S0, and spin-singlet and
spin-triplet interaction terms,

St
int �

Gt

2

Z
dx�ns�x��2, Ss

int �
2Gs

2

Z
dx�nc�x��2.

(1)

Here ns�x� and nc�x� are the electronic spin and charge
density fields, respectively, and Gt and Gs are the spin-
triplet and spin-singlet interaction amplitudes. We assume
that screening has been built into the starting action, so
the interaction amplitudes are simply numbers. By putting
Gs � Gt one obtains the Hubbard model considered in
Ref. [5]. The magnetic equation of state we treat in zero-
loop approximation. The superconducting equation of
state needs to be calculated in one-loop approximation
in order to capture the spin-fluctuation induced pairing.
It takes the form of linearized strong-coupling equations
that are similar to those in Ref. [5]. These equations
can be rewritten as an eigenvalue problem, which can
then be solved numerically, using some theory for the
(para)magnon propagators as input. This is the estab-
lished procedure to calculate the critical temperature for
phonon-mediated superconductivity [13], and it has been
employed in the case of magnetically induced supercon-
ductivity or superfluidity in Refs. [2,6].

Even with a complete numerical solution of the
strong-coupling equations, the superconducting Tc is no-
toriously hard to predict. This holds a fortiori in the case of
magnetically mediated superconductivity since (1) there is
much less experimental information about the paramagnon
propagator that could be used as input than about phonon
spectra, and (2) there is no analog of Migdal’s theorem.
Our ambition here is therefore not to calculate Tc, but
rather to perform a relative comparison of Tc values in
the PM and FM phases, respectively. For this purpose, a
simple McMillan-type approximation for Tc [13] suffices.
We obtain

Tc � T0�t� exp�2�1 1 dL
0 1 2dT

0 ��dL
1 � . (2)

Here T0�t� is a temperature scale that will be specified
below. Specializing to the p-wave case, the d

L,T
0,1 read

dL
1 �

GtN
"
F

�k"
F�2

Z 2k "
F

0
dk k

µ
1 2

k2

2�k"
F �2

∂
DL�k, i0� , (3a)

dL
0 �

GtN
"
F

�k"
F�2

Z 2k
"

F

0
dk kDL�k, i0� , (3b)
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dT
0 �

GtN
"
F

�k"
F�2

Z k
"

F1k
#

F

k "

F2k #

F

dk kDT �k, i0� . (3c)

k
"
F �k#

F� are the Fermi wave numbers for the up (down)-spin
Fermi surface, and N

"
F is the density of states at the up-spin

Fermi surface. In the PM phase, k
"
F � k

#
F � kF . DL,T �q�

are the longitudinal and transverse (para)magnon propaga-
tors. They are related to the electronic spin susceptibil-
ity x via DL,T �q� � xL,T �q��2NF , with NF the density of
states at the Fermi level in the PM phase. We use the ex-
pressions that were derived in Ref. [14], with one crucial
modification that we will discuss below. From that paper
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we obtain in the PM phase, and in the limit of small wave
numbers,

DL,T �q, i0� � 1��t 1 bL,T �q�2kF�2� . (4)

In the Gaussian approximation of Ref. [14], bL � bT �
1�3. However, there is no reason to prefer this Gauss-
ian approximation over any other approximation scheme.
The functional form of the long-wavelength expression,
Eq. (4), on the other hand, is generic. We therefore adopt
Eq. (4) with bL,T arbitrary coefficients of O�1�. By the
same reasoning, we have in the FM phase, in the limit of
long wavelengths and small frequencies,
DL�q, i0� � 1��5jtj�4 1 bL�q�2kF �2� , (5a)

DT �q, iV� �
D�4eF

�1 2 t�2

µ
1

iV�4eF 1 �D�2eF �bT �q�2kF�2 2
1

iV�4eF 2 �D�2eF �bT �q�2kF �2

∂
, (5b)
with D the Stoner band splitting. For 0 , D , nGt , D is
related to the magnetization M by M � mBD�Gt .

Two comments follow: (1) In a strict long-wavelength
expansion of the propagators from Ref. [14] the bL and
bT in Eqs. (5a) and (5b) become magnetization dependent.
We ignore this effect and use the same values as in the PM
phase. We have compared this approximation against using
the full propagators from Ref. [14]; see below. (2) The
factor of 5�4 in Eq. (5a) arises since we keep the particle
number density fixed, as is the case experimentally, rather
than the chemical potential; see Ref. [5].

We now consider the longitudinal magnetic propa-
gator in the FM phase in more detail. In a Heisenberg
ferromagnet, the transverse spin waves or magnons
couple to the longitudinal susceptibility xL. This ef-
fect is most easily demonstrated within a nonlinear
sigma-model description of the ferromagnet, which treats
the order parameter M as a vector of fixed length M,
and parametrizes it as M � M���s�x�, p1�x�, p2�x���� with
s2 1 p

2
1 1 p

2
2 � 1, M the magnetization, and x a

space-time index [15,16]. The diagonal part of the pi-pj

propagator, �pipi� � �M2�2NF�DT , is proportional to the
transverse propagator DT , and the off-diagonal part has
been calculated in Ref. [16]. The longitudinal propagator,
DL � �M2�2NF� �s�x�s�y��, can be expanded in a series
of p-correlation functions,

�s�x�s�y�� � 1 2 2�pi�x�pi�x��
1 �pi�x�pi�x�pj�y�pj�y�� 1 . . . , (6)

where repeated indices are summed over. At one-loop or-
der, the term of order p4 yields the diagram shown in
Fig. 3. Notice that the sigma model, which neglects all
longitudinal fluctuations, replaces the external legs by con-
stants. Power counting shows that at nonzero temperature,
and for dimensions d , 4, this contribution causes the
homogeneous longitudinal susceptibility to diverge every-
where in the FM phase [17]. More generally, this one-loop
contribution, together with the zero-loop one, Eq. (5a),
yields a functional form for DL in the FM phase that is
exact at small wave numbers. This diagram has no ana-
log in the PM phase, while all other renormalizations of
the propagators will give comparable contributions in both
the PM and FM phases. It is therefore reasonable to cal-
culate Tc based on a one-loop approximation in the FM
phase, and compare it to a zero-loop calculation in the
PM phase. We have used Eq. (5b) for the internal propa-
gators in Fig. 3. Since the coupling constants involve a
wave number integral, Eqs. (3), we also need to go be-
yond the sigma model and keep the wave number depen-
dence of the external ones. For computational simplicity,
we have modeled the external legs by replacing Eq. (5a)
with a step function that cuts off the momentum integral at
k�2kF �

p
5jtj�4bL. With these approximations, the mo-

mentum integral in Fig. 3 can be done analytically, leav-
ing the frequency sum to be performed numerically. The
result and the resulting contribution to dL

1 and dL
0 depend

on the temperature, so Eq. (2) now needs to be solved
self-consistently for Tc.

We still need to specify the temperature scale T0�t�.
Following Ref. [5], we use the prefactor of jtj in Eqs. (4)
and (5a) as a rough measure of the magnetic excitation
energy,

T0�t� � T0�Q�t�t 1 Q�2t�5jtj�4� , (7)

with T0 a microscopic temperature scale that is related to
the Fermi temperature (for free electrons) or a bandwidth
(for band electrons). This qualitatively reflects the sup-
pression of the superconducting Tc near the FM transition
due to effective mass effects [2,5,6].

LL T

T

FIG. 3. Mode-mode coupling contribution to the longitudinal
�L� propagator DL from the transverse �T � ones.
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We are now in a position to choose parameters and cal-
culate explicit results. We put Gs � Gt [5]; other reason-
able choices yield similar results. Let us first ignore the
mode-mode coupling contribution to dL

1 and dL
0 . We have

performed the calculation both with the full propagators
from Ref. [14] and with the schematic Landau propaga-
tors, Eqs. (4) and (5a). With bL � 0.23, bT � 0.4 the
two results are within 10% of one another, and also very
similar to those obtained by Fay and Appel [5]. We then
use these values of bL,T to calculate the mode-mode cou-
pling contribution, and solve the Tc equation. The result
is shown in Fig. 1 and has been discussed above. We have
also explored the effect of varying the parameters bL,T .
With bL � bT � 1 we obtain the result shown in Fig. 4.
The (unphysical) zero-loop result in the FM phase is very
sensitive to the parameters, while the enhancement of the
(physical) one-loop result over the Tc in the PM phase
is rather robust. However, the position of the maximum
of Tc changes compared to Fig. 1; it now occurs at the
point where the magnetization reaches its saturation value.
The reason is as follows: As one approaches the mag-
netization saturation point from low magnetization values,
the transverse coupling constant dT

0 vanishes, and remains
zero in the saturated region. Effectively, the Heisenberg
system turns into the Ising model discussed in Ref. [6]. If
the longitudinal coupling constant dL

1 still has a substan-
tial value at that point, then this leads to an increase in
Tc. This is a very strong effect in the zero-loop contri-
bution (see Fig. 4), and the effect qualitatively survives
in the one-loop result. If, however, dL

1 is already very
small, then dT

0 going to zero has only a small effect on
Tc, as is the case in Fig. 1. Which of these two cases is
realized depends on the parameter values. We finally men-
tion that the first order nature of the magnetic transition
[3,9] adds another mechanism for suppressing Tc in the
PM phase: For a sufficiently strong first order transition,
and if the case shown in Fig. 4 is realized, then the effec-
tive t may be large enough everywhere for the system to
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FIG. 4. Same as Fig. 2, but for different parameter values (see
the text).
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miss the maximum of Tc in the PM phase, but not in the
FM phase.
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