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Anisotropic Scaling and Generalized Conformal Invariance at Lifshitz Points

Michel Pleimling1,2 and Malte Henkel1
1Laboratoire de Physique des Matériaux,* Université Henri Poincaré Nancy I, B.P. 239, F-54506

Vandœuvre lès Nancy Cedex, France
2Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

(Received 21 March 2001; published 31 August 2001)

The behaviour of the 3D axial next-nearest-neighbor Ising model at the uniaxial Lifshitz point is
studied using Monte Carlo techniques. A new variant of the Wolff cluster algorithm permits the analysis
of systems far larger than in previous studies. The Lifshitz point critical exponents are a � 0.18�2�,
b � 0.238�5�, and g � 1.36�3�. Data for the spin-spin correlation function are shown to be consistent
with the explicit scaling function derived from the assumption of local scale invariance, which is a
generalization of conformal invariance to the anisotropic scaling at the Lifshitz point.
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The modern understanding of critical phenomena is gov-
erned by the notion of scale invariance [1]. For isotropic
critical systems the extension from global, spatially homo-
geneous scaling to space-dependent rescaling factors leads
to the requirement of conformal invariance of the correla-
tors. This approach has proven to be very fruitful when ex-
amining isotropic equilibrium critical systems, especially
in two dimensions [1–3].

On the other hand, little is known for systems with
strongly anisotropic critical points, where the value of the
anisotropy exponent u differs from unity. In these cases,
the two-point function C� �r�, rk� satisfies the scaling form

C��r�, rk� � b22xC�b �r�, burk� � r22x
� V�rkr2u

� � , (1)

where rk and r� � j�r�j are the distances parallel and per-
pendicular with respect to a chosen axis, x is a scaling
dimension, u is the anisotropy exponent, and V�y� is a
scaling function. Scale invariance alone is not enough to
determine the form of the function V�y�.

Recently, a generalization of conformal invariance in-
volving local space-time-dependent scale transformations
for anisotropy exponents u fi 1 has been proposed [4].
This approach attempts to generalize the scaling (1), usu-
ally considered with b constant, to space-dependent rescal-
ing b � b��r�, rk�, thereby assuming that the two-point
functions still transform in a simple way. These trans-
formations are constructed, starting from the conformal
transformations rk ! �ark 1 b���grk 1 d� with ad 2

bg � 1, in such a way that the transformations in the
“spatial” coordinates �r� are consistent with the anisotropic
scaling (1). Systems which are invariant under these trans-
formations and whose correlators, generalizing (1), trans-
form covariantly under them are said to satisfy local scale
invariance (LSI). It turns out that if u � 2�N , where N is
a positive integer, V�y� satisfies the differential equation
[4]

a1
dN21V�y�

dyN21 2 y2 dV�y�
dy

2 zyV�y� � 0 , (2)

where z � 2x�u and a1 is a constant. Equation (2) can
be explicitly solved [4] in terms of hypergeometric func-
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tions 2FN21 (conformal invariance is reproduced [4] for
N � 2, and N � 1 gives the nonrelativistic Schrödinger
invariance [5]). Evidently, the above hypothesis of LSI in
systems satisfying (1) is a strong one and relies on certain
assumptions about the structure of the underlying field the-
ory (FT). We shall test the idea of LSI by checking the
resulting expressions for V�y� in a nontrivial spin system
which satisfies the strongly anisotropic scaling (1) [6].

While dynamical scaling (1) occurs in critical dynamics
(then u is referred to as dynamical exponent) or in
true nonequilibrium phase transitions such as directed
percolation, well-known examples of stongly anisotropic
equilibrium criticality are the Lifshitz points [7] encoun-
tered in systems with competing interactions. At a Lifshitz
point, a disordered, a uniformly ordered, and a periodically
ordered phase become indistinguishable [7]. The simplest
model for these is the ANNNI (axial next-nearest-neighbor
Ising) model [8] which describes faithfully, among others,
magnetic systems, alloys, or uniaxially modulated ferro-
electrics [9–11]. Recently, a large variety of new physi-
cal systems (ferroelectric liquid crystals [12], uniaxial
ferrolectrics [13], block copolymers [14], or even quantum
systems [15]) were shown to possess a Lifshitz point
which has stimulated renewed interest in its properties.
Furthermore, new field theory studies [16–19] have led
to more refined estimates (in the framework of an e

expansion) of the critical exponents of the general m-fold
Lifshitz points in d dimensions with a n-component order
parameter [16–18].

We study the 3D ANNNI model on a cubic lattice with
periodic boundary conditions. The Hamiltonian is

H � 2J
X
xyz

sxyz�s�x11�yz 1 sx�y11�z 1 sxy�z11��

1 kJ
X
xyz

sxyzsxy�z12� , (3)

with sxyz � 61, whereas J . 0 and k . 0 are cou-
pling constants. In the z direction, competition between
ferromagnetic nearest-neighbor and antiferromagnetic
next-nearest-neighbor couplings takes place, leading to a
© 2001 The American Physical Society 125702-1
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rich phase diagram with a multitude of different phases,
both commensurate and incommensurate to the underlying
cubic lattice [8]. The anisotropy exponent u � nk�n�,
where nk und n� are the exponents of the correlation
lengths parallel and perpendicular to the z axis. At the
uniaxial Lifshitz point, a recent careful field-theoretical
calculation [17] showed that u �

1
2 2 ae2 1 O�e3� in

a second-order e expansion (with e � 4.5 2 d), where
a � 0.0054 for the 3D ANNNI model.

Our main purpose will be the numerical computation
and thorough analysis of the critical spin-spin correlation
function at the uniaxial Lifshitz point of the ANNNI model
through a large-scale Monte Carlo (MC) simulation. The
agreement between our numerical results and the analytic
expression for V�y� derived from (2) presents evidence
that local scale invariance, as formulated in Ref. [4], is
realized as a new symmetry in strongly anisotropic equi-
librium critical systems.

Such a study does require reliable and precise estimates
of the critical exponents. However, published estimates
of critical exponents obtained with different techniques
spread considerably; see Table I. We therefore undertook
extensive Monte Carlo simulations to estimate the expo-
nents reliably. Previous Monte Carlo studies [20] consid-
ered only small systems of (mostly) cubic shape. Here,
we present calculations for large systems of anisotropic
shape with L 3 L 3 N spins, with 20 # L # 240 and
10 # N # 100, taking into account the special finite-size
effects coming from the anisotropic scaling at the Lif-
shitz point [22]. This is the first study of the ANNNI
model where the exponents a, b, and g are computed
independently.

As usual, the problems coming from critical slowing
down, encountered when using local Monte Carlo dy-
namics, are alleviated by using nonlocal methods, such
as the Wolff cluster algorithm [23]. For the Ising model
with only a nearest-neighbor coupling J, this algorithm
may be described as follows: one chooses randomly
a lattice site, the seed, and then builds up iteratively a
cluster by including a lattice site j (with spin sj), neigh-
bor to a cluster site i (with spin si), with probability
p �

1
2 �1 1 sgn�sisj�� �1 2 exp�22J��kBT ���. One ends

TABLE I. Critical exponents at the Lifshitz point of the 3D
ANNNI model, as obtained from Monte Carlo simulations, high-
temperature series expansion, and renormalized field theory.
The numbers in parentheses give the estimated error in the last
digit(s).

a b g �2 2 a��g b�g

MCa · · · 0.19(2) 1.40(6) · · · 0.14(2)
HTb 0.20(15) · · · 1.6(1) 1.1(2) · · ·
FTc · · · · · · · · · 1.27 0.134
FTd 0.160 0.220 1.399 1.315 0.157
MC 0.18(2) 0.238(5) 1.36(3) 1.34(5) 0.175(8)

aSee Ref. [20]. bSee Ref. [21]. cSee Ref. [17]. dSee Ref. [18].
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up with a cluster of spins, all having the same sign, which
is then flipped as a whole. These types of same-sign clus-
ters are obviously not adapted to our problem because of
the competing interactions along the z direction; see (3).

We therefore propose the following modified cluster
algorithm. Starting with a randomly chosen seed, one
again builds up iteratively a cluster. Consider a newly
added cluster lattice site i with spin si . A lattice site
j, with spin sj nearest neighbor to i, is included with
probability pn � p, whereas an axial next-nearest-
neighbor site k with spin sk is included with probability
pa �

1
2 �1 2 sgn�sisk �� �1 2 exp�22Jk��kBT ���. Thus,

the final cluster, which will be flipped as a whole, contains
spins of both signs. Ergodicity and detailed balance are
proven as usual. This algorithm works extremely well in
the ferromagnetic phase and in the vicinity of the Lifshitz
point. Generalization to other systems with competing
interactions is straightforward. For the computation of the
spin-spin correlation function we adapt in a similar way
a recently proposed very efficient algorithm using Wolff
clusters [24]. This algorithm yields the infinite-system
correlation functions at temperatures above Tc and greatly
reduces finite-size effects at the critical temperature as
compared to a more traditional approach.

We now outline the determination of the critical expo-
nents. The results are listed in Table I. Usually, 4 3 104

clusters were generated per run, discarding the first 104

clusters for equilibration. We averaged over an ensem-
ble of at least 15 runs using different random numbers to
obtain the final thermal averages. As an example, Fig. 1
shows the effective exponent beff � d lnm�d lnt, where
m denotes the magnetization and t � 1 2 T�Tc. In the
limit t ! 0 the effective exponent yields the critical expo-
nent [25] b, provided finite-size effects can be neglected.
The two sets of data in Fig. 1 correspond to two differ-
ent paths in the temperature-interaction space, both ending
at the point (k � 0.270, Tc � 3.7475), setting J�kB � 1.

0 0.05 0.1 0.15 0.2
t

0.1

0.15

0.2

0.25

β ef
f

(a): κ=0.270
(b): κ=0.270 + 1.6 (1/T−1/Tc)

FIG. 1. Effective exponent beff versus t for two different tra-
jectories in the �T , k� space; see text. Error bars include the
uncertainty in Tc: Tc�k � 0.270� � 3.7475 6 0.0005.
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For set �a�, k was fixed at 0.270, whereas, for set �b�,
k � 0.270 1 1.6�1�T 2 1�Tc�. The corrections to scal-
ing for set �b� are small compared to set �a�, resulting in
a plateau for t # 0.06, thus making a very precise esti-
mation of b possible. Of course, finite-size effects have
to be monitored carefully. As usual, we adjust the sys-
tem size in order to circumvent finite-size dependences
[25]. For the determination of the susceptibility and spe-
cific heat critical exponents g and a (see Table I), data
obtained at temperatures both below and above Tc were
analyzed. Our error bars take into account the sample av-
eraging as well as the uncertainty in the location of the
Lifshitz point. Based on our data, we locate the Lifshitz
point at k � 0.270 6 0.004, Tc � 3.7475 6 0.0005, thus
confirming a high-temperature (HT) series estimate [26].

The agreement of the independently estimated expo-
nents a, b, and g with the scaling relation a 1 2b 1

g � 2, up to 	0.8%, illustrates the reliability of our data.
We are now ready to discuss the scaling of the spin-spin

correlation function C��r�, rk� � 
s �r�,rks�0,0� and its scal-
ing function V�y� as defined in (1). In �d� 1 1� dimen-
sions, one has z � 2�d� 1 u��u�2 1 g�b�. For the 3D
ANNNI model, z � 1.30 6 0.05, where the error follows
from the errors in the values of the critical exponents. In
Fig. 2 we show selected data for the function

F�u� � u2z V�1�u� , (4)

with u �
p

r��rk, as computed by Monte Carlo simula-
tions of a system with 200 3 200 3 100 spins (assum-
ing [27] u � 1�2). This permits a nice visual test of the
data collapse and establishes scaling. Note that Fig. 2 was
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FIG. 2. Scaling funtion F�u� (see text) versus u1�2 �
�pr��rk�1�2 for k � 0.270 and T � 3.7475. Selected Monte
Carlo data for a system of 200 3 200 3 100 spins are shown
[27]. The different symbols correspond to 26 distinct values
of r�, with 2

p
12 # r� # 2

p
46. Inset: comparison of the

full data set of 1.7 3 104 points for the scaling function F�u�
(gray points) with the analytical prediction Eq. (5) following
from the assumption of LSI, with p � 20.11, a1 � 33.2, and
b0 � 0.41 (solid curve).
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obtained after taking into account more than five million
cluster updates.

The small deviations (of order 	2%) from the value u �
1�2 obtained in recent field-theoretical calculations [17]
are not yet distinguishable [27] from the purely numerical
errors in our data and the exponents derived from them.
Therefore, for our purposes, namely the test of LSI, it
is enough to set u � 2�N � 1�2, leading to N � 4 in
the differential equation (2) [6]. In addition, the scaling
form (1) implies the boundary condition V�y� � y2z for
y ! `. For N � 4, there are two independent solutions
of Eq. (2) satisfying this boundary condition [3,4], and the
scaling function becomes

V�y� � b0F0���y��4a1�1�4��� 1 b1yF1���y��4a1�1�4��� , (5)

where F0,1 are explicitly given in Eqs. (18) and (19) of
Ref. [4]. Here a1 is the constant occurring in (2) and
b0,1 are free parameters. Since b0 and a1 are merely
scale factors, the functional form of the scaling functions
V�y� and F�u� depends on the single universal parameter
p :� a

1�4
1 b1�b0.

To see this, consider the moments M�n� :�R`
0 du unF�u�. For u � 1�2 and taking into account (5),

it follows [28] that in the scaling region the moment ratios

J��mi �; �nj �� :�
kY

i�1
M�mi�

¡ kY
j�1

M�nj� , (6)

with k $ 2 and
P

i mi �
P

j nj , are independent of b0
and a1 and only depend on the functional form of F�u� as
parametrized by p. Our Monte Carlo data for the spin-spin
correlator will be consistent with LSI if the values of p
determined from several different ratios J coincide.

Since we are not able to compute numeri-
cally the function F�u� for values of u below
u0 	 0.22, a direct analysis along the lines just
sketched is not possible. Instead we have to con-
sider the moments eM�n� :�

R`

u0
du unF�ua

1�4
1 � �

a
2�n11��4
1

R`
w0

dw wnF�w� with w0 � u0a
1�4
1 . The mo-

ment ratios eJ��mi�; �nj�� [defined in complete analogy

with (6)] then depend on the scale factor a
1�4
1 through w0.

The parameters a1 and p are determined from the follow-
ing scheme. By choosing a suitable starting value for a1

we compute an approximative value for p by comparing
the values of the moment ratios eJ [obtained from the full
data set for F�u� as shown in the inset of Fig. 2] with
the p-dependent expressions coming from integrating theeM�n� using the analytic form (5). An improved value for
a1 is then derived by comparing the values eM�m�� eM�n�
for arbitrary m and n obtained (i) from our numerical data
and (ii) from the analytical expressions after inserting
the value of p. The final values of a1 are obtained by
averaging over five different pairs �m, n�.

The values of p and a1 determined from several dis-
tinct moment ratios are collected in Table II. We obtain
125702-3
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TABLE II. Values of the parameters p and a1 computed from
different moment ratios eJ��mi�; �nj��; see text.

�mi� �nj� p a1

�0, 20.5� �20.25, 20.25� 20.102 32.7
�20.25, 20.75� �20.5, 20.5� 20.125 34.0

�0.2, 20.9� �0, 20.7� 20.100 32.8
�0.2, 20.6, 20.8� �20.3, 20.4, 20.5� 20.102 32.8

�20.1, 20.6, 20.7� �20.4, 20.5, 20.5� 20.117 33.5

the mean values p � 20.11�1� and a1 � 33.2�8�. The
consistency of the different determinations of the two pa-
rameters provides clear evidence in favor of the applicabil-
ity of the hypothesis of local scale invariance to the Lifshitz
point of the ANNNI model.

Finally, b0 	 0.41 is obtained by adjusting the scale of
F. Inserting these values into the analytical expression
yields for F the solid curve shown in the inset of Fig. 2.
The agreement between our MC data and the theoretical
result is remarkable.

Local scale invariance was confirmed before at the Lif-
shitz point of the axial next-nearest-neighbor spherical
(ANNNS) model. In that exactly solvable model, the Ising
model spins in (3) are replaced by spherical model spins
sxyz [ 4 together with the usual spherical constraint [8].
At the Lifshitz point, one has u � 1�2 and the exactly
known spin-spin correlator [29] agrees with the scaling
form (5) for b1 � 0 [4]. Our finding that LSI also appears
to hold for the ANNNI model suggests that the domain of
validity of LSI should extend beyond the context of free
field theory which underlies the ANNNS model. It appears
plausible that LSI will also hold true for the Lifshitz points
of the axial next-nearest-neighbor XY (ANNNXY ), ax-
ial next-nearest-neighbor Heisenberg (ANNNH), . . . mod-
els [8] which are intermediate between the ANNNI and
the ANNNS model. Since the number of dimensions d�

merely enters as a parameter, local scale invariance could
also be tested along the lines of an e expansion [17].

In conclusion, the precise localization of the 3D ANNNI
model Lifshitz point and improved estimates of its critical
exponents allowed one, for the first time, to determine re-
liably the scaling of the spin-spin correlator. Its functional
form was found to agree with the prediction of local scale
invariance. The confirmation of the applicability of local
scale invariance to this situation suggests a new symmetry
principle for the description of equilibrium systems with
anisotropic scaling, especially for systems with competing
interactions at their Lifshitz points.
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