
VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001

12550
Anisotropic Interactions of Hydrogen Molecules from the Pressure Dependence
of the Rotational Spectrum in the Ar���H2���2 Compound
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We report the pressure evolution, up to 70 GPa, of the fine structure of the S0�0� rotational excitation
in the high-pressure Ar�H2�2 compound (with almost 100% para-H2) at about 30 K. A perturbative
theoretical analysis is developed to calculate intensities and frequency shifts of the active Raman rota-
tional components, on the basis of the intermolecular anisotropic interaction. The comparison between
experimental results up to 35 GPa and calculation allows a reliable determination of the anisotropic inter-
molecular potential in the solid, both for H2—H2 and H2—Ar at short range. Such results are important
for the interpretation of the high-pressure orientational properties of solid hydrogen.
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The high-pressure properties of the solid hydrogens are
far from being clarified and continue to attract great inter-
est [1,2]. Solid hydrogen molecules are weakly interacting
and stable up to the megabar range. Their quantum rota-
tional states differ only slightly from the free-rotor states,
up to relatively high pressure. A description in terms of
an intermolecular interaction potential is then particularly
meaningful, and allows the calculation, from first principle
quantum theory, of many spectroscopic properties [3].
Several models for the isotropic potential exist, some of
which are derived from molecular beam cross section and
gas phase properties, some from ab initio computations
on isolated pairs [4–7], and some others from the solid
equation of state [8]. Anisotropic interaction components
have also been derived; however, these are less reliable,
especially at short intermolecular distances. The transition
to the rotationally ordered high-pressure phases of H2 and
the structure of these phases can possibly be described
by an accurate knowledge of this anisotropic interaction.
Therefore it is quite useful to study the spectrum of the
rotational excitations (rotons) that is determined by these
anisotropic interactions.

In pure solid parahydrogen, the splitting of the S0�0�
Raman line into a triplet has demonstrated the hexagonal
close packed (hcp) structure of the low pressure solid [3]
and its disappearance with rising pressure has revealed the
transition to the ordered phase [9,10]. The analysis of this
splitting has been done in the past considering only the
strongest electric quadrupole-quadrupole (EQQ) interac-
tion [11]. The effect of the other components is usually
neglected, because of the symmetry of the hcp lattice.
However, in a recent study up to 70 GPa [12] the authors
propose that other components of the anisotropic H2—H2
interactions, different from the EQQ, may play a signifi-
cant role.

In this paper we demonstrate that anisotropic compo-
nents of the H2—H2 interaction can be measured with great
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sensitivity from the analysis of the pure rotational Raman
band S0�0�, in the stoichiometric compound Ar�H2�2. The
theoretical analysis of the rotational bands in Ar�H2�2, on
the basis of perturbation theory, is also developed in this
paper. This permits one to calculate the frequency po-
sitions, intensities, and symmetry properties of the S0�0�
components, on the basis of the anisotropic H2—H2 and
H2—Ar interaction potentials. On the other hand, mea-
surements of the polarization properties of the band com-
ponents permit one to assign the experimental frequencies
to the theoretical ones. It is of importance that, in contrast
to the case of pure H2, in Ar�H2�2 crystal field effects do
not cancel out, allowing the possibility to measure compo-
nents of the anisotropic potential with symmetry different
from the one of the EQQ term.

The Ar�H2�2 crystal has been prepared at room tem-
perature, the pressure slowly rising above solidification
(4.3 GPa) of an Ar�H2 gas mixture in stoichiometric
proportion inside a diamond anvil cell (DAC). The crystal
space group, known from synchrotron x-ray diffraction
[13], is D4

6h (P63�mmc) with eight H2 molecules and four
Ar atoms in the unit cell. All the samples are single crys-
tals with the crystallographic c axis along the cell axis.
This is shown by the presence of a faceted (hexagonal)
crystal during the growth process. In Ar�H2�2, as in solid
H2, the molecules rotate almost freely, and their vibra-
tional interaction is described quantitatively in both solids
by the same model [14]. Details of the forward-scattering
Raman setup are described in Ref. [15]. Pure para-H2 is
obtained by taking advantage of the increased intrinsic
conversion rate in a solid sample of Ar�H2�2 at high
pressure [15], which is of the same order of magnitude
as the one measured in solid H2 [16]. When conver-
sion is almost complete (� 3% ortho-H2), the S0�0�
band develops a fine structure, showing several peaks that,
at a pressure of 6 GPa, spread over a frequency range of
about 100 cm21 (see Fig. 1).
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We performed several isothermal scans at about 30 K up
to a maximum pressure of 68 GPa. Pressure in the sample
has been determined by the ruby scale [17]. The values of
the line positions, intensities, and widths have been derived
for every pressure. The peaks, whose frequency rises with
pressure with a much higher slope than the average one,
are assigned to lattice phonon excitations.

Polarization analysis has been of fundamental help to
identify the various components of the band, and to com-
pare with theory. This has been possible because the ori-
entation of the crystal is known, overcoming the serious
experimental difficulties, due to the depolarization of the
radiation by the two stressed diamonds, with the combined
use of a Babinet-Soleil compensator and of a polarizer af-
ter the DAC [18]. In Fig. 2 we report two spectra measured
at 14.9 GPa in the VH and the VV configurations, where
the first V indicates vertical incident polarization on the
sample, and the second letter the analyzed component of
the scattered radiation. It is evident that the two intense
lines at 353 and 391 cm21 and the weak one at 454 cm21

are polarized, while the others are nonpolarized. The ex-
tinction ratio appears lower for the 353 cm21 line, proba-
bly because other nonpolarized components give some
contribution close to this frequency.

We use quantum mechanical perturbation theory to
evaluate the energies of the rotational S0�0� states, similar
to the method described for solid H2 [19], assuming rigid
H2 molecules on a rigid lattice. The anisotropic interaction

200 300 400 500

P
(GPa)

68

52

36

26

16

4

Frequency shift (cm-1)

FIG. 1. Experimental Raman spectra of the S0�0� band at dif-
ferent pressures. Full and empty symbols mark some polar-
ized and nonpolarized rotational components, respectively, and
� marks one band assigned to a lattice phonon.
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energy is small with respect to the rotational energy, and it
is taken into account in a first order perturbative treatment.
It removes the m degeneracy and couples the components
of the rotational excitations of different molecules, but
does not mix states with different J’s. The wave function
for the J � 2, k � 0, rotational excitations is written as a
linear combination of spherical harmonics of the orienta-
tions Vqp of the pth molecule in the qth unit cell, that is,

c �
X
q

8X
p�1

12X
m�22

CpmY2m�Vqp� . (1)

There are forty linearly independent c functions due to the
eight H2 molecules present in the cell and to the five pos-
sible m values. Because of the symmetry properties of the
anisotropic part of the polarizability in the D6h rotation
group of the crystal [20], only three wave functions of sym-
metry A1g, four of symmetry E1g, and five of symmetry
E2g can give rise to Raman transitions from the ground
state. In order to calculate the frequencies and the inten-
sities of the active modes, it is necessary to write down
explicitly basis functions for these irreducible representa-
tions that are not reported here. We assume that the crystal
polarizability is composed only of single molecule contri-
butions and the potential energy is pairwise additive. In
this case it turns out that only three E1g and four E2g lines
are Raman allowed [18] so that only ten lines are to be
expected.
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FIG. 2. Upper lines: experimental spectra obtained with
different polarization at a pressure of 14.9 GPa. Bottom line:
Spectrum calculated at the same pressure, attributing to each
component a Lorentzian shape. Full symbols, empty symbols,
and stars mark A1g , E2g , E1g S0�0� components, respectively.
Upper symbols refer to experimental data as in Fig. 1, and
bottom symbols refer to calculated components.
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The radiation collected in our scattering geometry is due
to the components axx and axy of the polarizability that
transform as A1g and E2g. Therefore the lines associated
with the E1g states are either absent or very weak in the
experimental spectrum.

The anisotropic potential energy V is given by the sum
of the y�H22H2� and y�H22Ar� pair interactions. The pair in-
termolecular potential functions y are expanded in spheri-
cal components as in Ref. [21].

For H2—Ar pairs, the literature models for the aniso-
tropic interaction energy yH22Ar [22,23] are limited to the
spherical component V202. For H2—H2 various semiem-
pirical analytic expressions have been derived based on
experimental data [5,6], or on ab initio computation [7].
We will consider the components V202 � V022, responsible
for crystal field effects, and V224, which give rise to propa-
gating rotonic excitations. Other components (V222) which
may give a splitting are discussed later. No reliable infor-
mation exists in the literature about V404 for both H2—H2
and H2—Ar.

To represent the R dependence of the V202 potential
components we use analytic functions of the form [5,22]

V202�R� � A exp�2bR� 2 D�R�
∑

C6

R6
1

C8

R8
1

C10

R10

∏
,

(2)

where D�R� � exp�2a�R0�R 2 1�c� for R # R0 and
D�R� � 1 for R $ R0 with �a, c� integer numbers. Values
for the parameters are listed in Table I both for H2—Ar
and H2—H2.

The numerical calculation of Raman line positions and
intensities reduces to suitable lattice sums of the potential
components [18]. The density, and thus the intermolecular
distance, has been derived using the Ar�H2�2 equation of
state determined by x-ray diffraction [24].

With the anisotropic interaction potential components
reported in Refs. [5–7,22,23], the agreement with the ex-
periment is not satisfactory, resulting, on the average, in
a too small separation of the lines at low pressure, com-

TABLE I. Parameters of the anisotropic V202 components of
the H2—Ar and H2—H2 potentials. Units are cm21 for energies
and Å lengths.

H2—Ar H2—H2 H2—H2 H2—H2

This work Ref. [5] Ref. [7] This work

A 7.579 3 105 2.881 3 104 3.615 3 104 1.523 3 105

b 3.45 3.02 2.9 3.4
C6 2700 1224 1224 1224
C8 78 000 16 400 16 400 16 400
C10 0 114 000 487 000 232 000
a 4 1 1 1
c 3 2 2 2
R0 3.5727 5.82 5.82 5.82

Re 3.82 3.627 3.583 3.72
e 1.16 0.459 0.636 0.505
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pared with the experimental one. The comparison is shown
in Fig. 3(a) as a function of pressure, where the full and
dashed lines represent A1g and E2g components, respec-
tively. For this comparison, a constant shift has been ap-
plied to the theoretical frequencies, forcing the agreement
for the most intense component (empty squares).

We show that it is justified to attribute such a discrep-
ancy to the inaccuracy of the potential models. In the case
of H2—Ar, for example, the interaction potential is reliable
only for R $ 3.2 Å [22], while the nearest-neighbor (nn)
H2—Ar distances relevant for this experiment are in the
range 2.2 2.7 Å. We have then used our data to model
the potential components V202, V224 (H2—H2), and V202
(H2—Ar), mainly changing the repulsive hard core, to ob-
tain a better fit of the experimental spectrum. To judge
the accuracy of the fit not only the frequency positions but
also the intensities have been considered. Large changes
in the rotational frequencies are obtained even for a very
small change in the potential model, revealing the sensi-
tivity of the spectrum to the fine details of the anisotropic
interaction. The comparison is shown in Fig. 3(b), and it
is satisfactory for most of the components. The largest
discrepancies are observed for the two extreme lines that,
however, are very weak. At pressure above 30–40 GPa we
believe that the first order perturbative approach may not
be sufficient, and we do not consider relevant the disagree-
ment observed. For completeness, we report in Fig. 2 also
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FIG. 3. Comparison of the experimental frequency positions
(symbols as in Fig. 2) with the calculation (full lines, A1g
components; dashed lines, E2g components) using either the
anisotropic potential models quoted in the literature (a) or the
modified ones (b) as described in the text.
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the theoretical spectrum obtained attributing to each com-
ponent a Lorentzian shape with the same width, similar to
the measured ones. Our results for the V224 component for
H2—H2 essentially coincides with those of Ref. [6]. In
Table I we report the values of the parameters of the V202
potential models [Eq. (2)] obtained by our fit, with those
of Ref. [5] and those that reproduce the numerical results
of Ref. [7]. The V202 component for H2—Ar obtained by
the fit agrees with previously reported results within a 10%
discrepancy. On the other hand, much larger differences
are seen for the V202 component for H2—H2, which is al-
most twice as large as the result of Refs. [5,6] at short dis-
tance, the difference amounting to about 15 20 cm21 at
2.2 Å. The difference with the ab initio results of Ref. [7]
is slightly smaller.

To assess the reliability of our determination, the effect
of the small component of the type 222 of the H2—H2

potential [6] has also been taken into account. The inclu-
sion of such a contribution changes the rotational energy
shifts by less than 3% and does not appreciably change the
fitted potential parameters. The effects related to the zero
point motion of the centers of mass of the molecules, which
are neglected in the rigid lattice approach, are probably of
the same order of magnitude (about 5% at the densities
of our interest) of those calculated for the EQQ interaction
[25]. On the other hand, the anisotropic interaction derived
from molecular beam cross sections and gas phase data is
influenced by the problem that the dynamics of rotations
is strongly affected by the isotropic part of the potential
which determines the trajectories of the molecules. There-
fore a small variation in the assumed isotropic part of the
potential is reflected in a relatively larger variation in the
anisotropic components. Such a drawback is absent in our
method because the isotropic potential affects the orienta-
tional dynamics only through the small zero point motion.

Finally, we can notice that many body effects could
affect our results. Unfortunately, little is known about
three-body contributions to the intermolecular potential
and it refers only to long range dispersion terms [26].
Moreover, a theory for the inclusion of three-body poten-
tials in the calculation of rotational energy is still lack-
ing. Our potential can indeed contain effectively many
body terms being in any case of practical use for the ap-
plication to solid state properties, as has been done for the
isotropic potential. We therefore believe that the results
obtained in this work may be extremely valuable, due to
the high (and highly selective) sensitivity, for calculations
concerned with high-pressure properties of solid hydrogen,
specifically the structure of the ordered phases.
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