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The effect of surface roughness on Knudsen diffusion in nanoporous media is investigated by means of
dynamic Monte Carlo simulations in three-dimensional rough fractal pores. These simulations yield new
insight and explain a number of apparent inconsistencies by revealing a striking difference between the
roughness dependence of transport diffusion and gradientless (self- or tracer) diffusion. Both analytical
and simulation results show a significant roughness dependence of self-diffusion in the Knudsen regime.
Transport diffusion, on the other hand, is roughness independent, as the fluxes do not depend on the
detailed residence time and molecular trajectories.
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Disordered nanoporous materials with a vast pore net-
work and a rough internal pore surface are extensively used
in technical applications, such as heterogeneous catalysis
[1–3], fuel cells [4], adsorption [5], and separations [6].
Many of these processes are diffusion controlled, so that
a correct assessment of their efficiency depends on more
accurate determinations of the dependence of diffusion on
the topological and morphological textural parameters. Ef-
fects of pore interconnections, i.e., the topology of the pore
network, can be accounted for through methods such as
percolation theory, the effective medium approximation,
renormalization group theory, and Monte Carlo simula-
tions [1,2]. Pore shape and surface morphology may also
play a crucial role, which is, nevertheless, typically ig-
nored because of greater difficulties in modeling it realis-
tically [7]. In many applications involving gases, however,
Knudsen diffusion [8,9] plays a dominant role, meaning
that molecule-surface collisions are at least as frequent as
intermolecular collisions, so that pore surface morphology
may have an important effect on diffusion and therefore
on reaction efficiencies of diffusion limited catalytic pro-
cesses [10].

In this Letter, we study the effect of surface roughness
on Knudsen diffusion through dynamic Monte-Carlo simu-
lations in three-dimensional rough pores. We demonstrate
that there is a fundamental difference between gradient-
less self- or tracer diffusion and transport diffusion, i.e.,
diffusion under the influence of a concentration gradient.
This difference is well appreciated and understood for or-
dered microporous zeolites with subnanometer sized regu-
lar pores [11], but not in disordered nanoporous materials,
where we show for the first time how and why it comes
into play when surface roughness is significant. The effect
is studied for pores with fractal surface roughness within a
realistic finite range, because it has been demonstrated by
adsorption [12] and small-angle x-ray scattering [13] that
many disordered porous catalysts and sorbents prepared by
common sol-gel synthesis have a fractally rough internal
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surface within a finite scaling regime and down to molecu-
lar scales [14].

The effect of surface irregularity has been studied to
some extent, yet not systematically. Apart from the ap-
parent complexity of realistic roughness models [1,7], ex-
periments showed that shallow roughness on scales much
smaller than the scale of the interstices or pores was not
found to play a major role [15]. However, as mentioned
earlier, fractal surface roughness in mesoporous materials
is common and may include major perturbations on scales
typically ranging from subnanometer scales up to the size
of the pores, so that the outer cutoff of this scaling regime
is a significant parameter.

A quantitative study of the influence of the fractal sur-
face morphology on diffusion and reaction was started by
Coppens and Froment [14]. A mean-field approximation
predicts an inverse proportionality of the Knudsen diffu-
sivity with the geometrically accessible area, so that, for a
fractal self-similar surface with outer cutoff dmax and frac-
tal dimension D ,

DK � DK0�d0�D22, (1)

where DK0 is the Knudsen diffusivity in a smooth porous
medium with the same topology as the real, rough medium,
and d0 � d�dmax is the normalized effective diameter of
a molecule of size d. The nonuniform accessibility of the
surface could be accounted for in a more refined model,
which uses a first-passage time perturbation approach [16],
leading to

DK

DK0
�

1
1 1 a�1 2 �d0�b�

, (2)

in which a and b are constants which can be calculated
from the fractal adsorption dimension of the surface, D ,
and a parameter p0, the so-called return probability, i.e.,
the probability for a molecule to leave a fjord it has en-
tered already. Expressions for a�D , p0� and b�D , p0�
are given in [16].
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We have now performed dynamic Monte Carlo simu-
lations of both self- and transport diffusion in model pores
with a stochastic fractal surface with outer cutoff dmax
and inner cutoff dmin. A model pore is constructed from
N segments of length dmax. The pore surface consists
of the statistical Koch curves with D � log5� log3 [17]
also used by Sapoval [18] for two-dimensional (2D)
simulations, or the statistically self-similar Koch surfaces
with D � log20� log3 for three-dimensional (3D) pores
(Fig. 1), used in our earlier work [19]. The pore width,
length, and the number of generations n (outer/inner
cutoff ) are varied. In our computations, the molecules are
represented by point mass particles, so that the results are
approximate to order d � dmax�3n; features smaller than
�d are not “seen” by a molecule of size .d. While a
complete analysis of the collision and diffusion dynamics
should involve the interactions between the molecules
and the surface atoms, which can be done by molecular
dynamics [6,20], our goal is to present the sole effect
of geometrical factors and the differences between self-
and transport diffusion, which is why we take a purely
mesoscopic, geometrical approach. The irregularity or
roughness factor, z , of the pore at any generation is char-
acterized by the ratio of perimeter length (2D) or surface
area (3D) to perimeter length or surface area of a smooth
pore with the same cross section. The numerical simula-
tion of the gas motion proceeds as follows: Initially, a
point particle is released at a uniformly chosen random
position inside a pore. Then, the molecule is allowed to
follow a straight line in a random direction, until it leaves
the pore or collides with its wall. Immediately after a
collision, a new random direction is selected according to
Lambert’s cosine law [8,9].

FIG. 1. Part of a typical 3D model “Koch pore” with square
cross section and three generations of self-similarity. Extensions
to other cross sections are possible.
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For the simulation of self- and transport diffusion in
long pores, periodic boundary conditions over a number of
fractal segments were used to reduce the heavy computer
memory requirements; molecules leaving a sequence of
segments at one end reenter the opposite end. Then, the
self-diffusivity is evaluated using Einstein’s relation

Ds � lim
t!`

1
at

�j�l�t� 2 �l�0�j2� , (3)

in which a is 4 or 6 for two- or three-dimensional calcu-
lations, respectively, and �l�t� is the position of a molecule
at time t. For each set of parameters, ensemble averages
are performed over a large number of simulations, until
convergence is obtained. Transport diffusion is simulated
by imposing a concentration gradient over a pore with a
finite length. A crucial point in the latter simulations is
the elimination of “entrance effects,” i.e., the removal of
molecules that cannot enter deeply into a pore. This effect
eliminates the artificiality of the shape of the inlet, allow-
ing the molecules to equilibrate after crossing a few (1–5)
segments. Transport diffusion is then considered over the
pore stretching out from the equilibration length until the
other pore end, and with respect to the imposed concen-
tration gradient over this same piece. It is worth noting
that such entrance effects may also occur in real porous
media. The transport diffusivity, Dt, is estimated from the
transmission probability, ft , which is the fraction of equi-
librated molecules leaving the pore at the other end:

f �
ftCAu

4
, Dt � 2

f

�=C
, (4)

where CA is the inlet concentration and u is the average ve-
locity of the molecules. In all simulations, the amount of
fractal segments N was chosen large enough not to influ-
ence the results. In the case of self-diffusion, trajectories
are started in the middle, and in transport diffusion studies
at the pore mouth. After a large number of collisions, and
using periodic boundary conditions, the end-to-end square
displacement l2 as well as the total length of the trajec-
tory L are calculated. This allows us to calculate the self-
diffusivity Ds by equation (3). A typical example of part of
a trajectory in a 2D pore with n � 2 generations is shown
in Fig. 2a, but most calculations are performed in 3D.
As expected, the number of collisions increases with the
irregularity.

At first, consider the probability distribution of the in-
dividual trajectories, as shown in Fig. 2b; it is shown to
be well approximated by a Lévy-type power law distribu-
tion [17,21] with an outer cutoff on the order of dmax and
an inner cutoff on the order of d. The relative number
of short paths increases when the irregularity is increased.
Deviations occur for very long paths, which are influenced
by the detailed shape of the generator, as a result of inner
cutoff effects.

The main results are presented in Fig. 3a, which shows
the roughness dependence of the self- and transport
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FIG. 2. (a) Typical molecular trajectory generated in a 2D
computer simulation. (b) Probability distribution p�l� of the
individual trajectories for a 3D “Koch pore,” 3rd generation
(n � 3), pore width d � dmax.

diffusivity in 3D pores. There is clearly a large influ-
ence of roughness on self-diffusion; the self-diffusivity
decreases as the fractal scaling range widens, i.e., with
increasing roughness or decreasing d. On the other hand,
the transport diffusivity does not vary with z and is
therefore independent on roughness. This is a result of the
fact that the transport fluxes are independent on the
residence time of individual molecules; only the con-
centration gradient over the pore and the average pore
cross section matter, implying that in a long enough pore
and in a finite concentration gradient transport diffusion
should not be a function of wall surface irregularity, as our
simulations show. Self-diffusion, on the other hand, is a
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FIG. 3. Roughness dependence of the normalized self- (solid
line) and transport (dashed line) diffusivities in (a) 3D pore with
a rough surface, pore width d � dmax, and (b) 2D fractal pores
with different widths; triangles are for a simulation in a wide
pore, d � 4dmax, similar to the pore used in [18]. D0 is the
diffusivity in a smooth pore.
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direct function of the individual molecular trajectories,
the total trajectory length, or residence time. Trajectory
lengths will increase with increasing surface irregularity,
and depend on molecular size and shape [19]. The effect
of pore diameter d on self- and transport diffusivity is
presented in Fig. 3b. For wider pores, the effect of rough-
ness on self-diffusivity is less pronounced. Simulation
results in a wide two-dimensional model pore similar
to that used by Sapoval and co-workers [18] show little
dependence on surface roughness, in agreement with their
results (Fig. 3b). The surface irregularity in these pores
is such that the largest irregular features are considerably
smaller than the pore diameter. Experiments show that
this requirement is not met for many industrial nanoporous
sorbents and catalyst supports [22], where the fractal
perturbations reach up to the size of the local channel
diameter. The latter is a result of the fact that pores in
sol-gel based materials are interstices between primary,
fractally rough aggregates. Sapoval’s model would be
more appropriate for certain leached materials; our more
general results, however, show a significant roughness
dependence for self-diffusion in nanopores with rough-
ness up to the size of the pores themselves �dmax � d�,
a typical situation in sol-gel synthesized disordered
materials.

We can now compare the MC results with the analyti-
cal solution for self-diffusion in a random 3D fractal pore
model on the basis of Eq. (2). In this case, p0 is the ratio
of the area of a fjord’s opening to the area of its (unper-
turbed) walls [16] so that p0 � 1�5. The result in 2D is
compared with the simple mean-field expression, Eq. (1),
which ignores the nonuniformity of the surface accessibil-
ity to diffusing molecules. Figure 4 compares simulation
results and analytical calculations. The agreement with
analytical results based on a first-passage time approach is
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FIG. 4. Self-diffusion vs roughness factor. Symbols are Monte
Carlo simulation results; lines correspond to analytical calcula-
tions in 2D (dashed line) and 3D (solid line).
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excellent, and even the mean-field approximation is rather
good.

It is interesting to draw a parallel with diffusion in
crystalline, microporous zeolites, where the qualitative dif-
ference between the dependence of self- and transport dif-
fusion on occupancy is well known [23]. When the size of
the molecules is similar to the pore size, which is often the
case for zeolites, diffusion of these molecules is activated,
and can be approximated by site-to-site hops on a lattice.
Two molecules cannot occupy the same lattice site, and
molecules cannot easily pass each other. In the simplest
case of pure Si zeolites with equivalent adsorption sites, the
self-diffusivity decreases with occupancy in a monotonous
way, because at higher occupancy molecules are trapped
for longer times. Transport diffusion on a lattice of equiva-
lent sites, on the other hand, is occupancy independent,
even if the residence times of individual molecules are
much longer at higher occupancies. Although the details of
the diffusion mechanism are clearly different, the trapping
because of adsorption in zeolites, with hops in between
successive adsorption times, is qualitatively comparable to
the geometrical trapping by surface indentations in meso-
porous media, where the same qualitative behavior for
self- and transport diffusion as a function of increasing
roughness is observed.

In conclusion, both simulations and analytical calcula-
tions show that surface roughness can have a pronounced
influence on self-diffusion of gases in the Knudsen regime,
which frequently is the dominating diffusion regime in
mesoporous materials. This is especially so when the pores
are fractally rough with perturbations of the same order of
magnitude as the local pore diameter, such as for typical
sol-gel based catalysts and supports. Transport diffusion,
on the other hand, does not significantly depend on rough-
ness, because the fluxes are not influenced by the detailed
residence time distribution. Flux-based experimental mea-
surements of diffusion through pellets or membranes can
therefore not reveal roughness effects. As expected for
rough fractal media, the individual collision pathways are
Lévy distributed within the scaling regime. Since catalytic
efficiency is influenced by the surface geometry [14], these
results are of great importance to catalysis. In future work,
model reactions will be added and calculations will be
performed for pore structures with different realistic cross
sections.
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