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Smallest Nanotube: Breaking the Symmetry of sp> Bonds in Tubular Geometries

Dragan Stojkovic, Peihong Zhang, and Vincent H. Crespi*

Department of Physics, The Pennsylvania State University, 104 Davey Lab, University Park, Pennsylvania 16802-6300
(Received 30 March 2001; published 28 August 2001)

We describe how sp? carbon, threefold coordinated by other carbons, can be replaced by sp? carbon,
also threefold carbon coordinated, to produce extremely small-diameter (~0.4 nm) carbon nanowires
with only minimal bond-angle distortion. Under a naming convention analogous to that for ordinary
carbon nanotubes, the smallest sp> tubes have wrapping indices (3,0) and (2,2). These systems have
large band gaps and a stiffness larger even than that of traditional sp2-bonded carbon nanotubes. They
therefore form the stiffest one-dimensional systems known.

DOI: 10.1103/PhysRevLett.87.125502

The atomically thin two-dimensional covalent structure
of a graphene sheet can be distorted in the third dimen-
sion with a modest energy cost (quadratic in the mean cur-
vature, with Gaussian curvature taken up, in e.g., five or
sevenfold rings), thereby producing topologically distinct
low-energy structures such as nanotubes [1] and nanocones
[2]. However, in very small-diameter nanotubes (below
1 nm in diameter) the curvature penalty of distortion be-
comes more severe as the bond angles deviate far below the
ideal 120° sp? angles. Here we describe how sp? carbon,
threefold coordinated by other carbons, can be replaced by
sp> carbon, also threefold carbon coordinated, to produce
extremely small-diameter (~0.4 nm) highly stable carbon
nanowires with minimal bond-angle distortion. Such sys-
tems represent the extreme limit of a small-diameter, rigid
one-dimensional atomic structure [3].

The key idea here is to break the tetrahedral symmetry
of an sp3-hybridized carbon precursor by attaching one
relatively tightly bonded group (e.g., hydrogen or fluorine)
and three more weakly bonded groups as shown in Fig. 1.
Eliminating the weakly bonded groups then produces a
carbon building block with three reactive bonds per carbon,
whose mutual angles match well to a highly curved small-
radius cylinder. The precursor molecule could also contain
multiple carbons (e.g., C2H2X>), so long as each carbon
has exactly one relatively inert ligand.

The resulting carbon structures satisfy Euler’s rules for
closed polyhedra in exactly the same manner as does car-
bon in more familiar sp? structures, so long as one ig-
nores the topologically irrelevant capping ligand on the
fourth bond. Since the stoichiometry of tightly bound lig-
ands is fixed at one per carbon, it is impossible to form a
capped three-dimensional interlinked hexagonal ring struc-
ture without rearranging these ligands. (In the small-radius
tubes that we consider, energetically unfavorable rings of
fewer than five sides are also required to form a Euler cap.)
Therefore, if growth conditions are such that the capping
ligands are tightly bound and immobile, then the system
will always have an active growth edge, whose energy is
minimized by restriction to a small-radius one-dimensional
growth axis.
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PACS numbers: 61.46.+w, 62.25.+g, 73.22.—f

The result is an extended one-dimensional structure
formed from pure hexagonal rings [4]. The symmetry
analysis developed for the usual nanotubes [5] remains
applicable, except now we have two types of atoms, so the
tubes are described by two orbits of the group action. One
can even follow an analogous wrapping-index naming
convention as for sp? carbon nanotubes: the most stable
sp3 tubes, and the ones which we examine in detail, are
then the (3,0) and the (2,2) tubes shown in Figs. 2 and 3.
The (3,0) tube is essentially a polymer of a close variant
of adamantane [6], the most stable hydrocarbon known
when measured as the binding energy per carbon atom.

We have performed density functional total energy
calculations in the pseudopotential approximation for
the (2,2) and (3,0) sp3-carbon nanotubes. As a basis
for the representation of the Kohn-Sham equations we
used plane waves with the cutoff energy of 816 eV. To
fully exploit the tube symmetry, we arranged the (2,2)

FIG. 1. The proposed precursor and an illustrative growth con-
figuration showing the role of the capping ligand.
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FIG. 2. The relaxed structure of the (3, 0) tube, both a doubled
unit cell and a space-filling model of the tubular structure.

nanotubes in a square lattice and the (3,0) nanotubes in a
hexagonal lattice. The distance between the axes of the
adjacent tubes is held at 10.5 A so that the interaction
between tubes is negligible and we can use a purely axial
k-point grid (of eight points). Atoms are described with
Troullier-Martins pseudopotentials [7] with cutoff radii of
0.619 A for carbon and 0.360 A for hydrogen.

The calculated bond lengths (see Figs. 2 and 3) are
similar to C-H and C-C bond lengths in alkanes (i.e.,
1.11 A and 1.54 A). The bond angles are close to the
ideal tetrahedron value, 109.5°, so the material comprises
a nearly optimal sp® bonding structure with no dangling
bonds. Therefore the band structures (Fig. 4) have large
band gaps typical of saturated hydrocarbons. These
band gaps greatly exceed those obtainable in sp? carbon
nanotubes, since in that case the semiconducting bandgap
arises solely from a nanometer-scale circumferential
boundary condition [8], whereas in sp> tubes the gap
arises from the local sp3 bond saturation. The bands of
the (3,0) tube are particularly flat, due to relatively long
axially directed carbon-carbon bond (1.62 A). The lower

FIG. 3. The relaxed structure of the (2,2) tube, both a single
unit cell and a space-filling model of the tubular structure.
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bands of the (2,2) nanotube seem to evoke the folded
band structure of a hydrogenated graphenelike sheet. The
large band gaps and binding energies of these structures
(see below) suggest that their synthesis should be favored
so long as capping can be maintained on the final sp?
bond, which should be possible for a judicious choice
of feedstock molecule (i.e., one with three weak C-X
bonds and one strong C-Y bond, such as C-H) and growth
conditions (i.e., which differentially favor the breaking of
C-X above C-Y).

The ab initio total energies for the (2,2) and (3,0)
tubes are very close: the (2,2) tube is favored by roughly
0.05 eV per carbon atom. The (2,2) tube is also 0.22 eV
per carbon atom more stable than benzene, a well-known
cyclic hydrocarbon of identical 1:1 carbon:hydrogen stoi-
chiometry. To compare with standard sp2-bonded tubular
structures, one must create a reference system compris-
ing a purely carbon sp? tube of similar diameter plus the
requisite number of isolated H, molecules. Since sp2
tubes so small in diameter do not exist, we favor the sp?
system slightly and compare the sp* systems to standard
(4,0) and (6,0) tubes plus the appropriate Hy’s. Our pro-
posed (2,2) is 1 eV per carbon atom and 0.55 eV per car-
bon atom more stable, respectively, than the (4,0) and
(6,0) sp? variants. (It is also 0.11 eV per carbon atom
more stable than the “infinite-radius” limit of a graphene
sheet plus molecular hydrogens.) Earlier theoretical con-
siderations [9] and simulations [10] suggested that the
(4,0) tube is the thinnest possible metastable sp? carbon
nanotube. Such thin tubes have just recently been syn-
thesized, but only inside of multiwall nanotubes [11] or
zeolite channels [12], which surround the tube and stabi-
lize its delicate structure.

The (2,2) and (3,0) sp> tubes extend one-dimensional
carbon systems to the smallest possible radii. They are
also the beginning of an entire family of sp? tubes. As
the tube diameter increases, it becomes untenable to
populate only the outer surface with capping hydrogens,
since bond-angle distortions become severe. However, by
inverting some capping ligands onto the inner surface, one
can stabilize these larger structures. Figure 5 depicts the
stablest geometries (calculated within a tight-binding total
energy formalism [13]) for the (8, 8) and (5,0) sp> tubes.
Unrolled, the (8,8) system forms a pleated honeycomb
C-H plane with up-down alternated hydrogens, similar to
the pleated structure considered for some Si-H systems
[14]. The tubes undergo an interesting transition from
purely external capping groups to a mixture of internal
and external caps as the radius increases. For example,
within tight binding the (4,0) structure is most stable with
entirely external hydrogen. In contrast, the preferred (5,0)
structure has one row of hydrogen on the inner surface.
These inner hydrogens minimize bond-angle distortions
by increasing the mean curvature of the remaining
surface. Within the tight-binding total energy scheme,
the total energies per carbon atom for all of the sp?
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FIG. 4. The electronic band
structures of the (3, 0) and (2,2)
nanotubes, showing the large
band gap. Residual band fold-
ing is visible. The (3,0) tube
has weakly dispersive bands
due to the rather long axial
carbon-carbon bondlength of
1.62 A. Horizontal axes use the
same scale in both plots.
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tubes studied are only slightly higher than that of the
(2,2) tube (by 0.1 to 0.15 eV) and remain more stable
than, e.g., benzene [15].

It is particularly fascinating to consider the results of
partially removing hydrogen (e.g., thermally) from an sp?
tube to form a mixed sp?/sp> hybrid with novel electronic
boundary conditions and the possibility for tuning semi-
conducting/metallic properties similar to that described for
graphene strips [16]. Such partial removal may be particu-
larly facile for the tubes in the transition region of diame-
ter between pure external and mixed internal/external
capping ligands.

The smallest-diameter (2,2) and (3,0) sp> tubes are also
extremely stiff. A calculation of Young’s modulus requires
as input a meaningful cross-sectional area perpendicular
to the axis of the tube. One must take particular care
in defining this area for very thin tubes. We define the
cross-sectional area of the (2,2) and (3,0) tubes as that
corresponding to an equivalent number of carbon atoms
in a core sample through a bulk diamond structure. The
reference to a bulk structure of similar bonding geometry
minimizes the arbitrariness in defining the “outer surface”
of the tube. Bulk diamond (when calculated here with the
same pseudopotential method) has a volume of 5.536 A3

FIG. 5. The tight-binding relaxed structure of the (a) (8, 8) and
(b) (5,0) sp* tube (three unit cells are shown).
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per carbon atom. Assigning a similar volume per atom to
the tubular structures [17], the appropriate volumes of the
(2,2) and (3,0) unit cells are 17.94 A3 and 15.94 A3, re-
spectively. Dividing by the (well-defined) unit cell lengths,
the resulting cross-sectional areas are equivalent to those
of disks with radii of 2.39 and 2.25 A, respectively. Such
values are quite reasonable, considering the transverse di-
mensions of the structures given in Figs. 2 and 3. The
corresponding Young’s moduli are 1.78 TPa for the (3,0)
tube and 1.53 TPa for the (2, 2) tube. These values are sub-
stantially larger than those of more familiar sp? nanotubes:
The (4,0) tube, calculated here with a similar method, has
a Young’s modulus of 1.18 TPa. Earlier calculations [18]
for single sp? tubes gave 1 TPa, while experimental results
[19] cluster around 1.3 TPa.

Since cross-sectional areas are really only well defined
in macroscopic systems, a more direct and fair compari-
son between sp? and sp? carbon tubes is provided by the
following thought experiment: Given a box of N carbon
atoms and a distance L to span with filament(s) of maxi-
mal stiffness, should one choose sp? or sp* structures?
The suitable quantity of comparison is then the stiffness
per unit linear carbon atom density along the axis. This
quantity (in units 1078 Jm™!) is 3.44 for the (2,2) tube,
2.36 for the (3,0) tube, and only 1.59 for a (4,0) sp? tube
(larger-diameter sp? nanotubes have only slightly larger
values). From both points of view, these new sp? struc-
tures are more rigid than traditional sp? tubes, which were
previously believed to be the most rigid structures known.

Carbon nanotubes ultimately depend for their stability
on the topological rules which allow threefold coordinated
atoms to form extended open polyhedra (or equivalently,
closed polyhedra of genus one [20]) of arbitrary length
in systems with exclusively hexagonal faces. We demon-
strate here that sp> bonded carbon can assume the same
topology as sp?, so long as the fourth bond is capped with
a tightly bound ligand. The resulting structures possess
unique properties inaccessible in their sp? brethren: a very
large insulating band gap, high stability at an extremely
small diameter, and Young’s moduli exceeding 1.5 TPa.

125502-3



VOLUME 87, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 2001

This research has been supported by the Research Cor-
poration, the National Science Foundation through Grant
No. DMR-9876232 and the Army Research Office Grant
No. DAAD19-99-1-0167. We acknowledge the National
Partnership for Advanced Computational Infrastructure for
computational support. The authors are grateful to Peter
Eklund for useful discussions.

*Electronic address: vhc2@psu.edu

[1] S. Lijima, Nature (London) 354, 56 (1991).

[2] A. Krishnan, E. Dujardin, M. M.J. Treacy, J. Hugdahl,
S. Lynum, and T. W. Ebbesen, Nature (London) 388, 451
(1997).

[3] Geometrically, one could construct a smaller rigid structure

from a triangular atomic motif, but such a bonding geome-

try, regardless of the type of atom, is not nearly as stable
as carbon sp> bonds.

Strictly speaking, to guarantee that Eulers rule is satisfied

one must also assume that the end cap atoms are also

threefold coordinated, but this restriction does not affect
the allowed bonding geometries in the body of the tube.

See [20] for a more complete discussion of local and global

topological constraints.

[5] M. Damnjanovic, I. Milosevic, T. Vukovic, and R.
Sredanovic, Phys. Rev. B 60, 2728 (1999).

[6] Cage Hydrocarbons, edited by G.A. Olah (J. Wiley &
Sons, Inc., New York, 1990); Carbocyclic Cage Com-
pounds: Chemistry and Applications, edited by E. Osawa
and O. Yonemitsu (VCH Publishers, Inc., New York, 1992).

[7] N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993
(1991).

[8] N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev.
Lett. 68, 1579 (1992); J. W. Mintmire, B. 1. Dunlap, and

[4

[}

125502-4

(91
(10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

C.T. White, Phys. Rev. Lett. 68, 631 (1992); R. Saito,
M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl.
Phys. Lett. 60, 2204 (1992).

S. Sawada and N. Hamada, Solid State Commun. 83, 917
(1992).

L.-M. Peng, Z.L. Zhang, Z. Q. Xue, Q.D. Wu, Z.N. Gu,
and D. G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000).

H.Y. Peng, N. Wang, Y.F. Zheng and Y. Lifshitz,
Appl. Phys. Lett. 77, 2831 (2000); L.-C. Qin, X. Zhao,
K. Hirahara, Y. Miyamoto, Y. Ando, and S. lijima, Nature
(London) 408, 50 (2000).

N. Wang, Z.K. Tang, G.D. Li, and J.S. Chen, Nature
(London) 408, 50 (2000).

D. Porezag, Th. Frauenheim, Th. Kohler, G. Seifert
and R. Kaschner, Phys. Rev. B 51, 12947 (1995);
A.P. Horsfield, Phys. Rev. B 56, 6594 (1997).

G. Seifert, Th. Kohler, H. M. Urbassek, E. Hernandez, and
Th. Frauenheim, Phys. Rev. B 63, 193409 (2001).
Binding energies in the local density approximation of
density functional theory are typically very accurate for
the differences in total energy between structures, while
the absolute binding energy tends to be overestimated.
Therefore the absolute scale is best set by the experimen-
tal binding energy of, e.g., a benzene molecule, which is
59.24 eV. See, for example, http://archive.ncsa.uiuc.edu/
Apps/CMP/hydroc.html

K. Nakada, M. Fujita, G. Dresselhaus, and M.S.
Dresselhaus, Phys. Rev. B 54, 17954 (1996).

The average bond lengths in (2,2) and (3, 0) tubes differ
only slightly from that in diamond, so this identification is
reasonable, particularly for the (2,2) tube.

J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997).

A. Krishnan, E. Dujardin, T. W. Ebbesen, P.N. Yianilos,
and M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998).
V.H. Crespi, Phys. Rev. B 58, 12671 (1998).

125502-4



