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Inverse Statistics of Smooth Signals: The Case of Two Dimensional Turbulence
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The problem of inverse statistics (statistics of distances for which the signal fluctuations are larger
than a certain threshold) in differentiable signals with power law spectrum, E(k) ~ k7%,3 = a < 5, is
discussed. We show that for these signals, with random phases, exit-distance moments follow a bifractal
distribution. We also investigate two dimensional turbulent flows in the direct cascade regime, which
display a more complex behavior. We give numerical evidences that the inverse statistics of 2D turbulent
flows is described by a multifractal probability distribution; i.e., the statistics of laminar events is not
simply captured by the exponent « characterizing the spectrum.
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Many phenomena in natural science possess complex
behaviors over a wide range of spatial and temporal scales.
Complexity is quantified by the non-Gaussian properties
of probability distribution functions (pdf) of signal incre-
ments over a given range of scales. Whenever pdf’s at dif-
ferent scales cannot be superposed by a simple rescaling
procedure one speaks about intermittency [1]. Such non-
trivial rescaling properties may be exhibited by pdf’s tails
or peaks, or both [2]. Strongly intermittent and rough sig-
nals, like those encountered in three dimensional turbulent
flows, are the typical examples of systems with nontriv-
ial, say multiaffine, scaling of pdf’s tails. Other important
natural phenomena develop simple pdf’s tails but nontriv-
ial pdf’s peaks. This is the case of two dimensional tur-
bulence as it will be shown in this Letter. Indeed, laminar
fluctuations, corresponding to the events described by the
peak of the probability distribution, possess nontrivial scal-
ing properties. Recently, it has been shown that laminar
fluctuations of rough and multiaffine fields are optimally
characterized in terms of their exit-distance statistics, also
known as inverse statistics [3—-6].

The aim of this Letter is twofold. First, we want to ex-
tend the application of inverse statistics [3,4] to the case of
smooth signals with a given power spectrum, E(k) ~ k~“.
In particular, we discuss signals only one time differen-
tiable, i.e., 3 = a << 5. For such signals, direct statistics,
i.e., moments of signal increments over a given scale, do
not bring any information: they are always dominated by
the differentiable event, v(x + r) — v(x) ~ r, which is
always present when the spectrum has a slope & > 3. On
the contrary, we will show that the exit-distance statistics
is given by a bifractal distribution if only one kind of more
than smooth fluctuation exists. With more than smooth
fluctuations we mean events where the signal has a local
scaling as v(x + r) — v(x) ~ r" with h > 1.

Second, we will apply the inverse statistics analysis to
the case of two dimensional turbulence. Two dimensional
turbulence in the direct enstrophy cascade regime is of
obvious importance both theoretically and practically to
understand a variety of different natural processes, e.g.,
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in geophysics and astrophysics [7,8]. By applying the
exit-distance analysis to a set of 2D numerical simulations,
we will show in a quantitative way that laminar events
of two dimensional turbulence possess highly nontrivial
rescaling properties, revealing a rich (multifractal) struc-
ture of laminar fluctuations. We also discuss the impor-
tance of large-scale structures in determining the inverse
statistics of two dimensional turbulent flows.

Let us begin by considering a one dimensional signal
built by fixing its spectrum as E(k) ~ k~% on all available
wave numbers:

v(@) = > o(k)e ), (1)
k
with |#(k)|?> ~ k=@ and 6; random phases, uniformly dis-
tributed in [0,277]. If 3 = a < 5 the signal is everywhere
one-time differentiable: it follows that moments of its dif-
ference over any increment r always have a differentiable
scaling, namely

Sp(r) = (vlx +r) = v(X)]) ~ cpr?,

while moments with p = —1 do not exist. In order to
highlight the role of nontrivial more than smooth stochas-
tic fluctuations associated with the spectrum slope «, one
needs observable sensitive to laminar fluctuations like mo-
ments of inverse statistics. With inverse statistics we mean
moments of increments, r(8v), necessary to observe in
the signal a forward (backward) exit through a barrier ov.
In particular, we fix the height of the barrier, v, and we
pick at random a reference point x;. Then, we measure the
first forward or backward exit, r(8v), i.e., the first point
such that |v(xg = r) — v(xo)| = Sv, and we repeat the
observations for many xo and for different barrier heights.
This allows us to define the probability distribution for exit
events, P(r(dv)).

Let us define the exit moments through a barrier Sv as

TP (5v) = (r"(5v)). e)
where the average is taken with respect to the random

choice of xo [9]. Positive moments of exit events pref-
erentially weight smooth, laminar, fluctuations. Exit-event
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moments are also called inverse statistics moments because
of the difference with direct statistics where one measures
signal increments over a given scale. For the prototype
smooth signal (1), a rigorous estimate of the scaling ex-
ponents of inverse statistics moments can be derived as
follows. From (1), when the spectrum exponent is in the
window of first order differentiability, 3 = a < 5, we
may estimate the typical fluctuations as

vixo + r) — vixp) ~ dyv(xo)r + cx))r", (3

where we have kept only the two most important scal-
ing behaviors: O(r) because of the differentiability and
O(r") from the spectrum exponent. In (3), the exponent
1 = h < 2 is connected to the spectrum slope by the di-
mensional relation « = 2k + 1, while the function c¢(x) is
a continuous function of x. By studying the exit event, in
the limit of small barrier height, we select with probability
one the differentiable scaling r(dv) ~ Sv except for those
xos where the first derivative, d,v(xg), vanishes. In the
latter case, the O(r") term dominates the scaling behavior.
With 3 = a < 5 the first derivative is a self-affine sig-
nal with Holder exponent ¢ = h — 1,1i.e., d,v(x + r) —
d,v(x) ~ r¢, which vanishes on a fractal set of dimen-
sion D =1 — ¢ = 2 — h. Therefore, the probability to
see the subdominant term O (r") dominating the exit events
in (3) is given by the probability to pick a point at random
on a fractal set with dimension D, i.e.,

Plr ~ (6v)"/"] ~ r17P = (8v)!" /", @)

Taking into account both situations, we end with the fol-
lowing bifractal prediction for inverse statistics moments:
T(”)(év) ~ SyXu(p),
)
. p 1
Xot(P) m1n<p, T 1 h >
From the previous bifractal formula, one sees that laminar,
differentiable, fluctuations influence the inverse statistics
only up to moments of order p = 1; for larger p, the pdf
is dominated by the subdominant behavior, v(x + r) —
v(x) ~ r”. In other words, the extrema of the signal play
the role of singularities in inverse statistics: close to the
extrema, events with much longer exits through barriers
of order ov are observed when 6v — 0. In Fig. 1, we
numerically check this prediction on a one-dimensional
signal with a = 4, i.e., with & = 1.5. The derivative of
such a signal has an Holder exponent ¢ = 0.5; i.e., itis a
stationary Brownian motion. As shown, the prediction is
verified with high accuracy.

Switching to real signals, we consider two dimensional
incompressible turbulent flows. As it is well known, 2D
turbulence is characterized by a forward enstrophy cascade
from forced scales to dissipative ones [8]. In the inertial
range, arguments a la Kolmogorov give for the velocity
spectrum the prediction E(k) ~ k™3 plus logarithmic cor-
rections [8], which is experimentally [10] and numerically
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FIG. 1. Scaling exponents y(p) for the 1D signal (1) with
a = 4. The dashed line refers to the linear differentiable behav-
ior for p = 1, ypt(p) = p. The continuous line gives the more
than smooth behavior, yu:(p) = (p/h + 1 — 1/h). Moments
(2) have been computed using 10° realizations of the signal (1)
with 2!7 modes; for each realization 2'? starting points, x,, have
been taken at random.

[11] observed. However, it is also measured as a more than
smooth spectrum E(k) ~ k¢ with @ > 3 depending on
the characteristics of the forcing and large-scale dissipa-
tion [12,13]. The dependency of inertial range statistics
from large-scale effects (universality issue) is still an open
problem in 2D turbulence in the direct cascade regime.

The most important feature of the vorticity cascade is the
presence of a strong interaction between eddies of very dif-
ferent scales: such a nonlocality (in Fourier space) should
play a fundamental role in shaping the energy spectrum,
in particular the strong dependency of the spectrum slope
from large-scale effects. In order to understand the impor-
tance of large-scale statistics one needs to go beyond the
spectrum slope.

We analyze exit-distance statistics in a series of di-
rect numerical simulations of the two-dimensional Navier-
Stokes equation:

o+ J(w,¢) =vAiow — B, AP0 + F, (6)

where w is the vorticity, ¢ the stream function, and J the
Jacobian. We use a standard dealiased pseudospectral al-
gorithm with periodic boundary conditions, at resolutions
512% and 1024%. The large-scale forcing F is Gauss-
ian, white-in-time, and nonzero only at some characteristic
wave numbers ky between 4 and 6. Enstrophy is dissipated
at small scales with an hyperviscosity ¢ = 4. Energy is
removed at large scales to avoid piling up on the smallest
mode. We performed two sets of numerical simulations
with different IR draining, with an inverse Laplacian with
p = 2 case (A) and with p = 0 case (B), without observ-
ing big differences in the spectrum slope.

In Fig. 2 (inset) we show the compensated average
spectrum that we observe for case (A): notice the strong
influence of coherent structures for low wave numbers.
The best fit to the spectrum slope for this case gives
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FIG. 2. One dimensional longitudinal cut of the velocity field
v, (x0, y) (continuous line); the same after randomization of the
phases (dashed line). In the inset the averaged compensated
spectrum, with the best fit in the inertial range o = 3.26 = 0.06.

a = 3.26 * 0.06, i.e., a more than smooth exponent 1 =
1.13, while for the case (B) we found @ = 3.24 = 0.06.

The relevant test we wish to perform on the 2D flow
is comparing the inverse statistics measured on several
snapshots of the direct numerical simulations with the in-
verse statistics obtained after randomization of all velocity
phases on the same frames. We measured the moments of
exit events using both transversal and longitudinal veloc-
ity increments because they could reflect in a different way
the presence of coherent structures.

The rationale for this test is to investigate the impor-
tance of correlations between fluctuations at different wave
numbers and therefore the “information” content brought
by coherent structures in 2D turbulent flows. In Fig. 2, a
one-dimensional cut of the 2D velocity field before and
after phase randomization is plotted. At a first glance, it
is rather difficult to distinguish between the true dynami-
cal and the randomized field. This is due to the steep-
ness of the spectrum; i.e., only a few modes dominate the
real-space configuration. Despite the apparent similarity,
there are big statistical differences between the two fields.
Looking at inverse moments we measure a clear departure
of the true turbulent statistics from the bifractal prediction
(5), while the randomized configurations are in agreement
with it, with & = 1.13. Because of the numerical limited
resolution, in order to perform a quantitative statement, one
can evaluate only relative scaling properties. Therefore, we
measure scaling laws of the inverse statistics by plotting all
moments T(P)(§v) versus a reference one, say T?(6v).
This is the same technique called ESS [14] fruitfully ap-
plied in the direct analysis of 3D turbulent data with the
aim of readsorbing some finite size effects and extracting
scaling information also at moderate resolution. Plotting
data in this way allows quantitative statements only for
relative exit-distance exponents, x(p)/x(2).

In Fig. 3 we show the logarithmic local slopes for the
relative scaling of T™W(8v) vs T (8v) for longitudinal
and transversal velocity increments. We stress two impor-
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FIG. 3. Logarithmic local slopes for the relative scaling
TW(Sv) vs T?(Sv): for the longitudinal ((J) and transverse
exit-distance (X) for run (A). The same quantities after
the phases randomization are represented by (A) and (O),
respectively.

tant results. First, the inverse-statistics moment exponents
measured on the fields from the numerical simulations af-
ter phases randomization coincide with the prediction (5)
with 2 = 1.13 as extracted from the averaged spectrum.
On the other hand, the longitudinal and transversal inverse-
statistics moments without phases randomization have a
more complex, intermittent, distribution; i.e., they are not
described by the bifractal prediction (5). Second, lon-
gitudinal and transversal moments are slightly different,
indicating that longitudinal and transversal velocity fluc-
tuations probe differently the smooth part of the 2D field.
This is, of course, connected to the fact that longitudinal
or transversal velocity differences have different profiles
when measured across coherent vortical structures. We
also note that transversal exit moments display a better
scaling behavior than the longitudinal ones.

In Fig. 4, we summarize our results showing the curve
x(p)/x(2) for both randomized and not-randomized
longitudinal and transversal exit moments for run (A)
[15].  Notice that for p <1 randomized and not-
randomized data almost coincide because those moments
are dominated by the differentiable fluctuations
v(x + r) — v(x) ~ r and therefore the relative scaling
exponents differ only due to the factor y(2) which is
almost the same for both data sets. On the other hand,
clear different statistics are measured, for p > 1, by
comparing the true dynamical longitudinal and transversal
exit moments with the randomized ones.

In conclusion, we have given an estimate of inverse-
statistics moments for signals with a more than smooth
spectrum, i.e., signals which are differentiable and with
nontrivial stochastic subleading fluctuations. We have also
shown that statistical properties of a 2D turbulent flow are
not simply summarized by the spectrum slope.

From the exit-distance analysis it is possible to high-
light a whole spectrum of more than smooth fluctuations.
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FIG. 4. x(p)/x(2)for 1.5 = p = 6 for both longitudinal (A)
and transversal (O) exit moments obtained in run (A); (CJ) and
(X) indicate the same after randomization, respectively. Inset:
the same but for p < 1. The continuous line is the bifractal
prediction yue(p)/ xve(2), with A = 1.13. Error bars have been
estimated as the maximum deviation of the local slopes from
the average value. Run (B) gives indistinguishable results (not
shown).

Such fluctuations, being connected with laminar events, are
the strongest statistical signature of large-scale coherence.
Experiments with different methods of removing/pumping
energy at large scales should be performed, to investigate
the importance of large-scale structures in the inverse sta-
tistics of flows with different spectra. A more quantitative
comprehension of the multifractality of inverse statistics
could be inferred trying to connect scaling exponents to
the finite time (Lagrangian) Lyapunov exponents and the
drag coefficient, by extending the analysis proposed by Ott
and collaborators [13]. As a final remark, we stress that
inverse statistics provide a completely new statistical indi-
cator with respect to the standard direct statistics observ-
able. We have shown that such a method is necessary in
all those cases where nontrivial fluctuations are subleading
with respect to the differentiable contributions. Obviously,
the same kind of analysis here reported can be extended to
temporal signals, opening the possibility of applying the
method to a broad class of natural phenomena. As an ex-
ample, we just mention possible applications in situations
common to climatology or meteorology where estimating
the probability of persistent velocity configuration, or of
any other dynamical variable, is relevant. As a perspec-
tive, one important generalization would be the investiga-
tion of multidimensional signals by studying the statistics
of d dimensional volumes between equispaced isosurfaces.
The latter method may be, for example, important for ana-
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lyzing coherence properties of two dimensional or multi-
dimensional patterns.
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