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Nonstationary Time-Series Analysis: Accurate Reconstruction of Driving Forces
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We propose a simple method for the accurate reconstruction of slowly changing external forces act-
ing on nonlinear dynamical systems. The method traces the evolution of the external force by locally
linearizing the map dependency with the shifting parameter. Application of our algorithm to synthetic
data corresponding to discrete models of evolving ecosystems shows an accuracy that outperforms those
of previous methods in the literature. In addition, an application to the real-world sunspot time series
recovers recently reported changes in solar activity during the last century.
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Most real-world time series have some degree of
nonstationarity due to external perturbations of the ob-
served system. Furthermore, natural dynamics are often
complex enough to comprise multiple time scales, so
that for short observational periods the effective degrees
of freedom with the largest scales act as external per-
turbations for the fastest observed modes. In spite of
this, the vast literature on nonlinear time-series analy-
sis and the techniques developed from the theory of dy-
namical systems [1] mostly rely on the stringent condition
of stationarity. In recent years, however, an increasing
effort has been devoted to devise methods for nonsta-
tionary time series analysis [2,3]. Recent works have
addressed the question of the proper characterization of
nonstationarity [4], caused either by slow continuous per-
turbations (driving forces) or by abrupt discrete changes in
the dynamics [2,5]. Furthermore, delay embedding ideas
have been extended and used to cope with nonstationarity
[6]. In addition, there have been applications that range
from monitoring physiological and mechanical signals
[7] to extracting messages from a chaotic background
[8]. Nonstationary time series analysis is also of major
relevance for ecosystem modeling [9] and population
dynamics under changing environmental conditions [10].

In this Letter we focus on the accurate reconstruction
of external driving forces. This problem has already been
discussed by Casdagli [2] using recurrence plots but, as
this author himself states, this method is not very accurate.
A more efficient method based on the calculation of cross-
prediction errors has been proposed by Schreiber [3]. Here
we present a simpler method to trace parameter variations
from the nonstationary dynamics of complex systems, and
assess its performance by applying it to synthetic data from
ecosystem models. Furthermore, we discuss a concrete
application to the real-world sunspot time series, obtaining
results that agree with observed changes in solar dynamics
during the last century [11].

Consider an observational record with N data values
corresponding to a process generated by a deterministic
dynamical system. We want to model this process in
a d-dimensional pseudophase space according to xt11 �
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f�xt , at�, where xt � �xt, xt21, . . . , xt2d11� and time t
is measured in units of the lag t between observations.
Here at accounts for the effects of either an external
driving force or other internal degrees of freedom vary-
ing on large time scales T not modeled by f. Then,
if we split the data into Nint (possibly overlapping) in-
tervals of M points each, for Mt ø T we can write
x

�m�
t11 � f�x�m�

t , a�m��, where a�m� is the mean value of the
parameter in the mth interval considered and now t runs
only on points of this interval. For a smooth dependence
of f with a we can approximate x

�m�
t11 2 f�x�m�

t , a�k�� �
≠f
≠a �x�m�

t ,a�k�� �a�m� 2 a�k��, which should be valid for in-
tervals k and m close enough (in practice they can be taken
with a substantial overlap to fulfill this condition). Aver-
aging over all t in interval m we obtain

Em
k � Am

k Da
m
k , (1)

where we have introduced the notation Em
k � �x�m�

t11 2

f�x�m�
t , a�k���t , Am

k � � ≠f
≠a �x�m�

t , a�k���t, and Da
m
k �

a�m� 2 a�k�. Here the subindex k is fixed and denotes the
interval used as reference, while the running superindex m
describes the actual temporal variation of the driving force.
Assume now that the M data points in interval k cover
the attractor well enough to allow modeling f�≤, a�k��,
obtaining a predictor f̂�≤, a�k�� and estimates Êm

k . Even
in this case the system of Eq. (1) cannot be solved for
the Da’s because we do not have an estimate for Am

k .
However, since to the same order of approximation we
can replace ≠f

≠a �x�m�
t , a�k�� by ≠f

≠a �x�m�
t , a�m��, we can drop

the subindex k in Am
k . Thus, the system (1) can be solved

up to a scale transformation. In particular, for contiguous
intervals �m � k 1 1� and taking A1 as the parameter of
the unknown scale transformation, the solution is

Da
k11
k � �21�k11 Êk

k11

A1

k21Y
r�1

µ
Êr

r11

Êr11
r

∂
. (2)

Notice that the ratio Er
r11�Er11

r � 21 1 O�Dar11
r �.

According to the above discussion, we propose the
following procedure for reconstructing a: Choose a
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segment k and use its iterates to construct a model
f̂�≤, a�k��. Then, compute the average prediction er-
rors Êm

k for m � k 6 1. Repeat for all possible k
and reconstruct the driving force up to arbitrary scale
A1 and shift a�1� according to Eq. (2). Following this
procedure, even for a perfect modeling technique there are
methodological errors due to (i) the replacement on each
interval of the varying parameter a by its mean value,
and (ii) the local linear approximation used to obtain
Eq. (1). To test these questions we have considered three
well-known, single-species discrete chaotic ecosystem
models, whose dynamics under external forcing has
been discussed in Ref. [9]. These models are given by
xt11 � mxt�1 2 xt�, xt11 � xt exp�r�1 2 xt�K��, and
xt11 � lxt��1 1 xt�b , corresponding, respectively, to
the logistic, Moran-Ricker, and Hassell maps. The logistic
equation is well known beyond mathematical biology,
while the Moran-Ricker and Hassell maps have been used
in the analysis of insect and fish records. We drove the
parameters m and l to exemplify the case of a linear
dependency of the maps with the external force, and the
parameters K and b to study the nonlinear problem.
In all these cases we have considered a variation given
by at � Ca cos�2pt�T � exp�22pt�T� 1 Ba , and used
nonoverlapping intervals, i.e., N � MNint. The constant
Ca gives the force strength, and for each map it was
taken as large as possible without collapsing the attractor
to a trivial structure nor producing divergent behavior
[12]. The task is, of course, to reconstruct at up to this
amplitude and the constant displacement Ba . We took
T � N�2, so that the profile of the force is the same
independently of the record length considered, and varied
the number of intervals Nint � 10 40 to split this profile.
For simplicity, the number of iterates within each interval
was fixed to M � 1000 for all maps, which allows
modeling their respective chaotic dynamics. Notice that
according to this experimental setting Nint is controlling
the validity of the approximations made above (essentially
the fact that the driving force has a small change between
neighboring intervals). We used radial basis function
(RBF) networks [1] to model the maps, and all the results
below correspond to an average over 20 independent
realizations of the whole process [13].

In order to appraise the performance of the reconstruc-
tion method based on Eq. (2), we computed the normal-
ized mean squared error (NMSE) between the original and
reconstructed forces, i.e., the MSE divided by the force
variance. First, in order to explore the error due to the
assumption of a switching dynamics between intervals in-
stead of the real continuous parameter change, in Fig. 1
we plot the NMSE as a function of Nint for the logistic
map (for which the linear approximation in a, the other
source of error, is exact). In this figure we include also
the corresponding results from Schreiber’s method [3,14]
using the same RBF models. Our approach shows an av-
erage error more than 2 orders of magnitude smaller and,
as expected, it tends to decrease with Nint (it drops almost
124101-2
FIG. 1. NMSE as a function of the number of intervals Nint
for the logistic map. Open dots correspond to the method of
Ref. [3]; full dots are the results from Eq. (2). Gray area repre-
sents estimated errors.

1 order of magnitude in going from 10 to 40 intervals). A
more thorough comparison between both methods is given
in Table I, where we present results in the least favorable
situation for our approach �Nint � 10� for the three ecosys-
tem maps considered. Column (a) corresponds to the ideal
case of switching dynamics and perfect modeling, where
the true dynamics are used to compute Em

k and we replace
the driving force on each interval by its mean value. These
figures are a better comparison between the relative accu-
racy of both reconstruction algorithms at a methodological
level (in this case, for maps with linear dependency on
the shifting parameter the error in our approach is exactly
zero). Furthermore, column (b) gives the corresponding
results in the real situation of continuous parameter drift
and RBF modeling. Both for the ideal case and for the real
problem with linear dependency our algorithm produces
NMSE values much smaller (1 order of magnitude or even
less) than Schreiber’s method. For nonlinear dependen-
cies our results have also smaller errors and, as discussed
below, they can be further reduced by taking advantage of
the possibility of using overlapping intervals.

We have considered the Hassel and Moran-Ricker equa-
tions and performed the same study as above with Nint
varying from 10 to 191, keeping always the original N �
10 000 data points. This corresponds to contiguous in-
tervals having a fraction of common points varying from
0% to 95%. The method in Ref. [3] slightly improves

TABLE I. Average NMSE and their standard deviations.
(a) Switching dynamics and perfect modeling; (b) Continuous
parameter drift and RBF modeling.

(a) NMSE �1022� (b) NMSE �1022�
Map Ref. [3] This work Ref. [3] This work

Log 9.2 6 0.1 0 7.4 6 0.1 0.04 6 0.02
H�l� 8.5 6 0.2 0 5.1 6 0.4 0.08 6 0.03
H�b� 9.7 6 0.4 1.6 6 0.1 4.0 6 0.5 1.8 6 0.5
M-R 8.3 6 0.5 0.2 6 0.2 6.0 6 0.4 1.4 6 1.0
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with increasing overlaps (see Fig. 2), but the results ob-
tained using Eq. (2) deteriorate because the Êm

k are smaller
and tend to have large relative errors. The solution (2)
is unstable to these modeling errors, something which
becomes particularly acute near stationary points of the
driving force where Êm

k 	 0. A way to cope with these
problems is to write several systems of equations like
(1), Em

k � AmDa
m
k , with jm 2 kj � 1, 2, . . . , n, consid-

ering error estimates Êm
k between neighboring but non-

contiguous intervals. Now, since Da
m
k �

Pm21
r�k Dar11

r ,
all the solutions with jm 2 kj . 1 provide constraints for
the one-step shifts Da

k11
k . We have then 2�Nint 2 1� un-

known quantities Da
k11
k and Ak11�k � 1, Nint 2 1�, and

2n�Nint 2
n11

2 � equations to be fulfilled. This allows us
to obtain a more stable solution by solving the system in a
mean-square-error sense, which should compensate for un-
correlated modeling errors in Êm

k . We have implemented a
simple gradient-descent minimization of the error function

´ �
nX

r�1

"
Nint2rX
k�1

Pr �Êk1r
k 2 Ak1rDa

k1r
k �2

1

NintX
k�r11

Pr �Êk2r
k 1 Ak2rDa

k
k2r�2

#

1 h

Nint21X
k�1

D2Ak , (3)

where DAk � Ak11 2 Ak . The h term forces the method
to seek for smooth solutions, as is usually done for ill-
defined problems. Here Pr is a normalized arbitrary
weight that can be used to reduce the importance of
equations involving intervals farther apart. The simplest
case, and the one we have explored in detail in this work,
corresponds to square systems �Pr � dr,1�, where the
minimization of ´ produces more regular results than
the exact solution (2). Notice that this way of solving the
problem can deal with stationary regions in the driving
force. Furthermore, the effects of accidentally large
modeling errors in Êm

k will be moderated by the h term.
Figure 2 shows that the NMSE obtained in this way for
both the Hassel and Moran-Ricker maps have roughly
an exponential decay with the intervals’ overlap. For
large overlaps, the minimization of ´ for square systems
produces again NMSE 1 order of magnitude smaller
than Schreiber’s method. We have checked that different
initializations of Ak and Da

k11
k do not sensibly change

these results [15]. A brief comment concerning h: As
expected, for small values of this parameter the solutions
obtained from different initializations have erratic NMSE,
while for very large h the Ak’s remain pinned to 1; in
between, there is a large plateau in NMSE as a function
of h for h 	 1 that we have taken as an indication of a
stable solution.

We have observed that the consideration of overdeter-
mined systems leads to a further small error reduction
when n � 2 or 3. Beyond that, the use of farther apart
124101-3
intervals spoils the local nature of our algorithm. How-
ever, having overdetermined systems opens up the more
interesting possibility of solving the problem for the si-
multaneous external drive of two or more parameters. This
situation is by no means unusual for real systems and, to
our knowledge, it has not been explored in depth in the
literature. Space limitations prevent us from discussing
here a simple extension of the algorithm above described
to treat this problem.

Finally, we present an application to the real-world
sunspot time series, which has been suggested to corre-
spond to a driven nonlinear oscillator [16]. To provide
a more stringent test for the algorithm we have removed
from this series trivial features related to weak (linear)
nonstationarities. For this, we have segmented the solar
cycles and normalized their amplitudes to 1, so that after
reuniting these pieces the resulting time series has no
amplitude modulation nor average drift (see Fig. 3, upper
panel). The application of the reconstruction algorithm
leads to the noisy result (thin line) shown in the lower
panel of Fig. 3; the same algorithm applied to the original
time series gives the result indicated by the thick line.
Both results have been smoothed with a moving window
of M � 33 points (	3 solar cycles), corresponding to the
length of the intervals used. The small differences are
due to the arbitrary breaking into pieces and normalizing
process performed on the series, but the overall result is
quite the same. In this case we have modeled the dynam-
ics using ensembles of feedforward neural networks [17],
and considered Nint � 297 intervals (97% of overlap),
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FIG. 2. NMSE as a function of the degree of overlap between
contiguous intervals. (a) Hassel map; (b) Moran-Ricker map.
Full squares and dots correspond, respectively, to the results
obtained from Eq. (2) and by minimization of Eq. (3); open
dots are results of the method in Ref. [3].
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FIG. 3. Driving force for the sunspot dynamics. Upper panel:
normalized sunspot series. Lower panel: reconstructed force
from the original sunspot record (thick full line) and from the
normalized series (thin full line), obtained by minimization of
Eq. (3). The dashed line gives the result for the normalized
series using the method in Ref. [3].

embedding dimension d � 3 and time lag t � 1. Notice
that there is a perturbation with a period of 	100 years
that corresponds to the previously empirically determined
Gleissberg cycle [18] and, more interestingly, also a rise
in the perturbation amplitude in the last century. The
ratio between the two more recent maxima gives 	2.34,
in surprising coincidence with the factor 2.31 for the
increase in the sun’s coronal magnetic field since 1901,
recently estimated from measurements of the near-Earth
interplanetary magnetic field [11]. This effect has been
attributed to chaotic changes in the dynamo that generates
the solar field. Implications of our findings on this prob-
lem deserve a further investigation. For comparison, in
the lower panel of Fig. 3 we give also the result obtained
using the method in Ref. [3] (dashed line), which fails to
account for this change in amplitude.

In conclusion, we have proposed a simple and very
transparent method for the accurate reconstruction of driv-
ing forces in nonstationary time series. We have shown,
using synthetic data from forced chaotic ecosystems maps,
that our method outperforms similar algorithms existing
in the literature. Moreover, a concrete application to the
124101-4
analysis of the sunspot time series reveals changes in the
solar dynamics which are in agreement with other recent
estimations. Details of all the above calculations will be
published elsewhere. The algorithm here proposed can be
extended to trace the simultaneous variation of several pa-
rameters, something that to our knowledge has been only
partially explored in the literature. Work in this direction
is in progress.
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