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Loop quantum cosmology is shown to provide both the dynamical law and initial conditions for the
wave function of a universe by one discrete evolution equation. Accompanied by the condition that semi-
classical behavior is obtained at large volume, a unique wave function is predicted.
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Traditionally, physical systems are modeled mathemati-
cally by providing laws governing the dynamical behavior
and specifying initial (or boundary) conditions. The lat-
ter select a particular solution to the laws, but usually all
of them are allowed and they describe the system under
different conditions. However, in cosmology the situation
is different: there is only one Universe, and therefore only
one fixed set of initial conditions can lead to the physically
realized situation. In this context, the big bang singularity
is regarded as the point of “creation” of the Universe at
which initial conditions (or equivalent restricting require-
ments) have to be imposed. Since gravity is strong at that
stage and classical general relativity breaks down (signaled
by the appearance of a classical singularity), a quantiza-
tion of the gravitational field is needed, bringing us into
the realm of quantum cosmology.

The standard approach to quantum cosmology consists
of quantizing a minisuperspace model which is obtained
by specifying symmetry conditions, usually homogeneity
and isotropy, for the allowed metrics in spacelike slices
of a universe. This reduces the infinitely many degrees of
freedom of general relativity to finitely many ones allowing
standard quantum mechanical methods [1,2]. Because of
general covariance, the dynamical law is provided by a
constraint equation which takes the form of a second order
differential equation —the Wheeler-DeWitt equation —
for the wave function c�a, f� depending on the scale
factor a . 0 (conventionally used as internal time) and
matter degrees of freedom collectively denoted by f.
However, the classical singularity remains, and no initial
conditions are provided by the formalism which leads
at least to a two-parameter family (not counting matter
degrees of freedom) of solutions and not a unique (up to
norm) one. The original hopes [1] that there might be a
unique solution to the constraint equation are not realized.

To address this issue, proposals have been developed by
several authors. However, these proposals have consider-
able arbitrariness since they are driven primarily by the
authors’ intuition as to how the classical singularity might
be smoothed out by quantum gravity. Most well known
are the “no-boundary” [3] and “tunneling” proposals [4]
which both describe the creation of a universe at the place
of the classical singularity. In all those approaches matter
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is regarded as being irrelevant in the early stages, and so
the wave function c is assumed (implicitly or explicitly
[5]) to be independent of the variables f for small a; this
is already an initial condition which strongly restricts the
f dependence of c. We will take the same point of view
concerning matter degrees of freedom here, which we re-
gard as being justified thanks to the dominance of gravity
in early stages of the evolution.

But still, there is a two-parameter family of solutions
c�a� from which one parameter has to be fixed (since the
norm is irrelevant). This not only influences the wave func-
tion close to the singularity but also its late time behavior,
because it selects a particular linear combination of the ex-
panding and contracting components in a WKB approxi-
mation. However, as an initial condition it is specified at
the classical singularity [e.g., by fixing the value c�0� [1,6]
or by introducing an ad hoc “Planck potential” [5] ], and
thus involves Planck scale physics for which we need a full
quantum theory of gravity.

One candidate for a quantization of general relativity is
quantum geometry (formerly called loop quantum gravity,
see, e.g., [7,8]) which predicts discrete eigenvalues of geo-
metrical operators such as area and volume [9–11]. A
symmetry reduction [12] of the quantized (kinematical)
theory to cosmological models leads to loop quantum cos-
mology [13], in which the discreteness of the volume is
preserved [14]. All techniques used in this framework of
quantum cosmology are very close to those of full quantum
gravity, in contrast to standard quantum cosmology which
is based on a classical symmetry reduction to a simple me-
chanical system and subsequent quantization. Hence, the
results of loop quantum cosmology should be more reli-
able, in particular close to the classical singularity where
the two approaches show the largest differences. In fact,
loop quantum cosmology has a discrete evolution equation
[15,16] which replaces the Wheeler-DeWitt equation and
is singularity-free [17–19]. The fact that the Hamilton-
ian constraint operator of loop quantum cosmology [15] is
very close to that of the full theory [20] gives rise to the
hope that the results of [17] can be extended to less sym-
metric models.

Loop and standard quantum cosmology coincide well
at large volume where the discreteness is not significant,
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but deviate strongly when applied right at the classical sin-
gularity. In this Letter we will show that the particular
form of the evolution equation of loop quantum cosmology,
applied at a vanishing scale factor, leads to a consistency
condition for the initial data. In this way the evolution
equation provides both the dynamical law and initial condi-
tions: dynamics dictates the initial conditions. Accompa-
nied by a classicality condition for the solutions, a unique
(up to norm) wave function is predicted.

Isotropic loop quantum cosmology.— In the triad rep-
resentation of isotropic loop quantum cosmology [19] the
scale factor a [ �1 is replaced by a discrete label n [
� which parametrizes eigenvalues of the triad operator.
An orthonormal basis of the kinematical Hilbert space is
given by quantum states jn� labeled by the triad eigenvalue
n which also determines volume eigenvalues: V̂ jn� �
V�jnj21��2jn� with
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(g [ �1, which is of order 1, is the Barbero-Immirzi
parameter labeling inequivalent representations of the
classical Poisson algebra, and lP �

p
kh̄ with k � 8pG

is the Planck length). The volume operator has eigenvalue
zero with threefold degeneracy (for the states j61� and
j0�), but only one of them, j0�, has a degenerate triad and
so corresponds to the classically singular state. The wave
function c�a, f� of standard quantum cosmology is re-
placed by the coefficients sn�f� of a state js� �

P
n snjn�.

For large jnj the correspondence between a and n is
jn�a�j � 6a2g21l22

P which follows from the volume
spectrum (jnj � 2j 1 1).

The Hamiltonian constraint equation for spatially flat
models takes the form of a discrete evolution equation (see
[19] for the case of models with positive spatial curvature):
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where Vj are the eigenvalues (1) of the volume operator
with V21 � 0, and the coefficients k6

n are nonvanishing
for a generic ordering of the extrinsic curvature operator
and are approximately sgn�n� for large jnj (these are the
only properties used here; see [19] for explicit expressions
in terms of the volume eigenvalues). Here we introduced a
matter Hamiltonian Ĥf whose particular form is irrelevant.
It only matters that it acts diagonally in the triad degrees
of freedom which is always the case in the absence of
curvature couplings.

Preclassicality.—Compared to the standard Wheeler-
DeWitt equation of second order the discrete evolution
equation is of order 16. Thus the problem of a unique
solution seems to be more severe at first sight, but the ad-
ditional solutions can easily be seen to not correspond to a
semiclassical solution. Let us call a wave function sn pre-
classical if, and only if, at large volume �n ¿ 1� it is not
strongly varying at the Planck scale (increasing the large
label n by 1), although it may oscillate on much larger
scales (increasing n by a macroscopic amount). Note that
a difference equation with fixed step size, as is always
the case here, may have solutions which are very differ-
ent from those of an approximating differential equation
even though all solutions of the differential equation are
well approximated when the step size goes to zero [21].
A common possibility is a solution with alternating sign
between successive n, which cannot correspond to a con-
tinuous solution of a differential equation. Because of in-
stabilities, there can also be solutions with exponentially
increasing absolute value, even in regimes where the solu-
tions of the differential equation are purely oscillating (i.e.
in the classically allowed range in a WKB approximation).

A precise formulation of the phrase “not strongly
varying” can be given in the following way. Note that the
Barbero-Immirzi parameter g enters a�n� � gl2

Pn�6,
which is used here as internal time. Although the physical
value of g is fixed and of order 1 [22], we can use the
g ! 0 limit, together with n ! ` such that a�n� is
fixed, to decide whether a wave function is preclassical.
In this limit the difference a�n 1 1� 2 a�n� becomes
infinitesimal implying a continuum limit. A wave function
sn is preclassical if, and only if, its limit g ! 0, n ! `
exists, providing a rigorous check of the preclassicality
condition. Note that k and h̄, and thus lP, are fixed in this
limit and we are still dealing with quantum cosmology.
In fact, standard quantum cosmology can be shown to be
the above limit of loop quantum cosmology, and thus is a
good approximation at large scales where the discreteness
is unimportant.

Our condition picks out only those solutions which
are oscillatory on large scales but almost constant on the
Planck scale, i.e., for which the small scale discreteness
can be ignored. Since this is a prerequisite for a sub-
sequent WKB approximation, we call it preclassicality.
Whenever it is fulfilled, a discrete wave function sn�f� can
be approximated at large n by a standard continuous wave
function c�a� :� sn�a� with n�a� � 6a2g21l22

P as above,
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which approximately solves the standard Wheeler-DeWitt
equation up to corrections of order

p
g lP�a [17,19].

Thus, standard quantum cosmology is realized only as an
approximation valid at large volume (see Fig. 1). Since
the Wheeler-DeWitt equation is of second order and thus
has two independent solutions, there can be at most two
independent preclassical solutions s6 of our discrete
evolution equations, such that any preclassical solution
can be written as s � as1 1 bs2 with a, b [ �.

To demonstrate this explicitly, we introduce

tm :� g21l22
P �V2jmj 2 V2jmj21�s4m ,

P�m� :� 1
3 gkl2

PHf�m� �V2jmj 2 V2jmj21�21,

using the expectation value Hf�n� of Ĥf�n� in a matter
state, such that for jnj ¿ 1, where k6

n � sgn�n�, the evo-
lution equation (2) takes the form

1
4

�1 1 g22�tm12 2 tm11 1

∑
1
2

�3 2 g22� 1 P�m�
∏
tm 2 tm21 1

1
4

�1 1 g22�tm22 � 0 . (6)

In a classical regime, jmj is large and P�m� � 2
3kHf�a

is approximately constant on a range small compared to
jmj. In this case we have a linear difference equation
with constant coefficients whose solutions can be found
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FIG. 1. The unique solution (1) of the Hamiltonian constraint
[Eq. (2)], when the Ricci curvature is due only to a positive
cosmological constant l :� l2

PL � 2 3 1024 (g � 1), which
is preclassical for large positive n. Evolving backwards
through n � 0, the wave function picks up a wildly oscillating
component and is no longer exactly preclassical at negative
n. The standard quantum cosmology wave function c�a�,
subject to �l4

P �4a�21d�da�a21d�da� 1 3la2l22
P �

p
a c�a� � 0

in the ordering corresponding to Eq. (2), is given by c�a� �
a21�2�A Ai���2�3l�1�3a2l22

P ��� 1 B Bi���2�3l�1�3a2l22
P ���� in terms

of Airy functions. Wave functions c�a� for two choices of the
parameters A and B are shown: the solid line is the unique (up
to norm) choice fulfilling DeWitt’s c�0� � 0, which in this
case is in good agreement with sn at positive n, whereas any
other choice leads to a diverging wave function (dashed line).
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by an ansatz tm ~ eimu with u [ � which in (6) yields
the quadratic equation

�1 1 g22� cos2u 2 2 cosu 1 1 2 g22 1 P � 0

which has solutions

cosu � �1 1 g22�21�1 6
p

g24 2 �1 1 g22�P �

being real with modulus smaller than 1 such that u is real
when g is of the order 1 and P is small.

If the matter does not contribute a Planck size energy, P
is small and we have cosu0 � 1 2 e 1 O�e2� or cosu1 �
�1 1 g22�21�1 2 g22� 1 e 1 O�e2� with 0 , e :�
1
2g2P ø 1. The first possibility, expanding cosu0 � 1 2
1
2u

2
0 1 O�u4

0�, leads to two solutions u0 � g
p

P 1 O�P�
and 2u0 with ju0j ø 1, both of which imply preclassical
t6
m � e6imu0 . Because g is not large compared to 1,

the second possibility cosu1 leads to u1, which violates
preclassicality [e.g., for g � 1 we have u1 � 6p�2 and
tm ~ �6i�m].

All 16 independent solutions tn�4 � g21l22
P �Vjnj�2 2

Vjnj�221�sn of (2) can be obtained as

tn�4 � e6inu0�4, e6inu1�4, �21�ne6inu0�4,

�21�ne6inu1�4, sne6inu0�4, or sne6inu1�4, (7)

where s can be 1i or 2i. Obviously, only the first two
are preclassical. The definition using g ! 0 (a finite) is
applied as follows: with n � 6a2g21l22

P we have

limg!0g21l22
P �Vjnj�2 2 Vjnj�221� � a�2 ,

limg!0e6inu0�4 � exp�6 3
2 i

p
P a2�l2

P� ,

whereas limg!0u1 � p and so the limit for g ! 0,
n ! ` does not exist for the remaining 14 solutions.

Thus, we see that the preclassicality condition naturally
divides all solutions into two classes: preclassical states
having a well-defined semiclassical limit, and other solu-
tions which cannot appear in a continuum theory. Restrict-
ing to the former leads to the same situation as in standard
quantum cosmology with two independent solutions from
which a linear combination (up to norm) has to be chosen.

Dynamical initial conditions.—Up to now we consid-
ered only the semiclassical regime, but there is an addi-
tional feature of loop quantum cosmology which emerges
right at the classical singularity, deeply in the Planck
regime where the approximation by standard quantum cos-
mology breaks down: the highest order (or lowest order
when we evolve backwards) coefficient vanishes when we
try to determine s0. At first sight, it seems that this is a
breakdown of the evolution similar to the classical situ-
ation. However, as demonstrated in [17,19], this is not the
case in the particular factor ordering of the constraint cho-
sen above because s0 completely drops out of the evolution
equation. [This observation depends crucially on the fact
that Ĥfs0�f� � 0 which is always true in quantum geom-
etry [18,19] but would be impossible without space-time
discreteness.]
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Instead of determining s0 the evolution equation leads to
a consistency condition for the initial data: starting from
a general preclassical solution sn � as1

n 1 bs2
n for large

n and evolving backwards, we eventually arrive at a point
where we have to apply (2) for n � 8. At this value of n
the lowest order coefficient A

�28�
8 vanishes, as noted above,

causing s0 to drop out. Since by assumption we have
already determined all sn for n . 0 (for which there is no
vanishing coefficient in the evolution equation), the would-
be equation for s0 leads to a further condition for higher
sn (s4, s8, s12, and s16; note that the consistency condition
only involves s4m, but other coefficients are related to them
by the preclassicality condition) which, upon inserting the
general preclassical solution sn � as1

n 1 bs2
n , implicitly

yields a linear relation between the two free parameters a
and b. This leaves us with a unique solution (up to norm).

We have shown that loop quantum cosmology implies
a discrete evolution equation which uniquely determines a
state (up to norm) behaving semiclassically at large vol-
ume. It is important to adapt the standard condition for
semiclassicality in a WKB approximation, taking the dis-
creteness of time into account. This is the only condi-
tion we need to impose and leads to a strong reduction of
the allowed solutions: without this preclassicality condi-
tion there are 14 more independent solutions which have
no continuum or classical limit. The crucial condition for
the uniqueness then arises from the particular structure of
the evolution equation in quantum geometry. We remark
that in general it is only possible to require preclassicality
at one connected domain of large volume. If one evolves
through a classical singularity, the wave function may pick
up components which oscillate at the Planck scale (see
Fig. 1). The precise form of these oscillations depends
on factor ordering ambiguities (in the coefficients k6

n en-
tering the constraint) and the use of the Lorentzian (versus
Euclidean) theory.

Such a unique wave function generally differs from
those obtained with boundary proposals of standard quan-
tum cosmology. By choosing a real prefactor it is always
real (for flat spatial slices the evolution equation has real
coefficients; this no longer holds true for spatially curved
models) and so cannot coincide with the tunneling wave
function [4]. While the no-boundary proposal [3] also
leads to a real wave function, it is imposed on the stan-
dard Wheeler-DeWitt equation at the Planck scale, where
large deviations to loop quantum cosmology occur. Thus,
in general its wave function of a universe is different from
the unique preclassical solution found here. The consis-
tency condition for the initial data in loop quantum cos-
mology may be expressed as s0 � 0 which is reminiscent
of DeWitt’s c�0� � 0 [1] (to achieve this, an ad hoc Planck
potential was introduced in [5]). However, since these
two conditions are imposed on completely different evo-
lution equations, the selected solutions in general differ.
As Fig. 1 shows, there may be a good coincidence in cer-
tain models, but only if the curvature is small at all times,
which can happen only in the absence of matter.
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Contrary to all other proposals for boundary conditions
in quantum cosmology, our dynamical initial conditions
are not chosen to fulfill an a priori intuition about the
creation of a universe but derived from the evolution equa-
tion which, in turn, is derived from quantum geometry, a
candidate for a complete theory of quantum gravity. There-
fore, one equation provides both the dynamical law and
initial conditions. It is still necessary to impose a condi-
tion, preclassicality, on allowed wave functions, but this
merely requires that a state has some semiclassical limit,
rather than a particular form or a given value in some point.
As we have seen, the critical condition, which crucially de-
pends on quantum geometry, emerges from evaluating the
evolution equation at the state which corresponds to the
classical singularity. So, in contrast to the classical situ-
ation where a singularity leads to unpredictability, in quan-
tum geometry the regime of the classical singularity fixes
ambiguities in the wave function of a universe.
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