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Initial Data for Two Kerr-like Black Holes
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We prove the existence of a family of initial data for the Einstein vacuum equation which can be
interpreted as the data for two Kerr-like black holes in an arbitrary location and with spins pointing
in arbitrary directions. We also provide a method to compute them. If the mass parameter of one of
the black holes is zero, then this family reduces exactly to the Kerr initial data. The existence proof is
based on a general property of the Kerr metric which can be used in other constructions as well. Further
generalizations are also discussed.
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Introduction.—Black-hole collisions are considered as
one of the most important sources of gravitational radiation
that may be observable with the gravitational wave detec-
tors currently under construction [1–5]. The first step in
the study of black-hole collisions is to provide proper initial
data for the Einstein vacuum equations. Initial data for two
black holes were first constructed by Misner [6]. Shortly
after, Brill and Lindquist [7] studied similar data with a
different topology which considerably simplified the con-
struction. Bowen and York [8] included linear and angular
momentum. Generalizations of these data were studied in
[9–12] (see also the review [13], and references therein).

These families of initial data depend on the mass, the
momentum, the spin, and the location of each black hole.
When the mass parameter of one of the holes is zero, one
obtains initial data for only one black hole. It is physically
reasonable to require initial data for one black hole to be
stationary, i.e., a slice of Schwarzschild or Kerr spacetime.
If this is not the case, it means that spurious gravitational
radiation is present in the initial data. In the case of [6]
and [7], this limit yields the Schwarzschild initial data.
However, when the angular momentum is not zero, one
does not obtain the initial data of the Kerr metric.

The Kerr initial data are not included in the families
considered above because the restrictions imposed on the
conformal 3-metric are too strong. In most cases it is
assumed that the conformal metric is flat. However, it
appears that the Kerr metric admits no conformally flat
slices (in fact, in [14] it has been shown that there does
not exist axisymmetric, conformally flat foliations of the
Kerr spacetime that smoothly reduce, in the Schwarzschild
limit, to slices of constant Schwarzschild time). Weaker
conditions on the 3-metric still exclude the Kerr data. For
example, in [9] the conformal metric is required to admit a
smooth compactification. We will see that, at least for the
Boyer-Lindquist slices, this condition is also strong enough
to exclude Kerr data.

Recently a number of proposals have been introduced
in order to construct more realistic black-hole initial data
[15–18]. However, none of these articles provide a rigor-
ous existence proof of the solutions. In some cases, the
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evidence for the existence of solutions relies on numerical
experiments for some values of the parameters. Even if
the solution exists for such choices of parameters, it is not
clear at all that it will also exist for other choices.

In this paper, we explicitly construct an initial data rep-
resenting two (or more) Kerr-like black holes in arbitrary
locations and with spins pointing in arbitrary directions.
When the mass parameter of one of the black holes is zero
we obtain exactly the Kerr initial data. A rigorous exis-
tence proof is provided assuming some conditions on the
parameters. The existence proof is based on general prop-
erties of the Kerr initial data which may also be useful in
other constructions.

The Kerr initial data.—Consider the Kerr metric in the
Boyer-Lindquist coordinates �t, r̃ , u, f� [19,20], with mass
m and angular momentum per unit mass a such that m2 .

a2. Take any slice t � const. Denote by h̃k
ab the intrinsic

3-metric of the slice and by K̃ab
k its extrinsic curvature.

These slices are maximal, i.e., h̃k
abK̃ab

k � 0. The metric
h̃k

ab is given in the coordinates �r̃, u, f� by

h̃k �
S

D
dr̃2 1 Sdu2 1 hdf2, (1)

where

S � r̃2 1 a2 cos2u, D � r̃2 1 a2 2 2mr̃ , (2)

and

h � sin2u���S 1 a2 sin2u�1 1 ŝ����, s �
2mr̃
S

.

(3)

The metric is singular whenever D or S vanishes. The
zeros of the function D are given by

r̃1 � m 1 d, r̃2 � m 2 d , (4)

with d �
p

m2 2 a2. The extrinsic curvature is given by

K̃kuf � N
22r̃ma3 cosu sin3u

S2 , (5)
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K̃kr̃f � N
am sin2u���2a4 cos2u 1 r̃2a2�1 1 cos2u� 1 3r̃4���

DS2 , (6)
where

N2 �
D

S 1 a2 sin2u�1 1 ŝ�
. (7)

Now, consider the coordinate transformation

r̃ �
a2 cos2�c�2� 1 d2 sin2�c�2�

a sinc
1 m ,

0 # c # p ,
(8)

where a is a positive constant. This transformation is the
composition of the transformation to the quasi-isotropical
radius r̄ and a stereographic projection, i.e.,

r̃ � r̄ 1 m 1
d2

4r̄
, r̄ �

a cos�c�2�
2 sin�c�2�

. (9)

It is defined for r̃ . r̃1, and becomes singular at r̃1. We
consider �c, u, f� as standard coordinates on S3. The
South Pole is given by c � 0 and the North Pole by
c � p; we will denote them by �0� and �p�, respectively.
Because of the isometry r̄ ! d2��4r̄�, the transformation
(8) maps one copy of the region r̃ . r̃1 into the region
c . c1 of S3, where c1 � 2 arctan�a�d�, and another
copy into c , c1. In the new coordinates, the metric (1)
extends to a smooth metric in S3 2 �0� 2 �p�. This mani-
fold defines a spacelike hypersurface in the Kerr space-
time which, in Fig. 28 of [21], corresponds to a horizontal
straight line going from one apex of a region I to the op-
posite apex of the adjacent region I. The poles �0� and �p�
are precisely these apexes, they represent the spacelike in-
finities of the initial data. This hypersurface is a Cauchy
surface for an asymptotically flat region of the Kerr space-
time (comprising two regions I and II, respectively).

Using the conformal factor

wk �
S1�4

p
sinc

, (10)

one defines the conformal metric hk
ab by

hk
ab � w24

k h̃k
ab . (11)

The conformal factor wk is singular at �0� and �p�,

lim
c!p

�p 2 c�wk �
d
p

a
, lim

c!0
cwk �

p
a .

(12)

The metric hk
ab has the form

hk
ab � h0

ab 1 a2fyayb , (13)

where h0
ab is the standard metric of S3, the smooth vector

field ya is given by ya � sin2c sin2u�df�a, and the func-
tion f, which contains the nontrivial part of the metric, is
given by
121102-2
f �
�1 1 ŝ�
S sin2c

. (14)

The function f depends on a, m, sinc, cosu. It is smooth in
S3 2 �0� 2 �p�. In order to analyze the differentiability
of f at the poles, consider a normal coordinate system xi

with respect to the metric hk
ab, centered at one of the poles,

and define the radius jxj � �
P3

i�1�xj�2�1�2. In terms of
these coordinates the function c, given by c � jxj, is seen
to be a Ca function of xi. From expression (14) one can
prove that the function f has the form

f � f1 1 f2 sin3c , (15)

where f1 and f2 are smooth functions in the neighborhood
of the poles, with respect to the coordinates xi . Since
sin3c [ W4,p, p , 3 (see, e.g., [22] for the definitions
of the Sobolev and Hölder spaces Ws,p and Cm,a), from
expression (15) we see that

hk
ab [ W4,p�S3�, p , 3 . (16)

This is the crucial property of the metric that will be used
in the existence proof. In fact, it is the only property of
the Kerr metric that we will need. It implies, in particu-
lar, that the metric is in C2,a�S3�. Since the poles �0� and
�p� are the infinities of the data, the expression (15) char-
acterizes the falloff behavior of the Kerr initial data near
spacelike infinity. The Ricci scalar Rk of the metric hk

ab is
a continuous function of the parameter a, and for a � 0
we have Rk � 6, the scalar curvature of h0

ab . Thus, if a
is sufficiently small, Rk will be a positive function on S3.
In the following we will assume that the latter condition is
satisfied.

The extrinsic curvature of the Kerr initial data remains
to be analyzed. Define Kab

k by

Kab
k � w

10
k K̃ab

k . (17)

The tensor Kab
k is smooth in S3 2 �0� 2 �p� and at the

poles it has the form,

Kab
k � Kab

J 1 Qab, (18)

where Kab
J � O�jxj23�. It is trace and divergence free

with respect to the flat metric (it contains the angular mo-
mentum of the data and the explicit form of this tensor is
given in [8]). The tensor Qab is O�jxj21�. If a � 0 then
Kab

k � 0.
The coordinate transformation (8) simplifies consider-

ably if we choose a � d. This choice makes the metric
(13) symmetric with respect to c � p�2. This is useful
in explicit calculations. Nevertheless, this choice is not
adequate for our present purpose, since it is singular for
d � 0 and one would like to have the flat initial data in
this limit. In the following we will assume a � 1.
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Initial data with two Kerr-like asymptotic ends.—The
conformal approach to find solutions of the constraint
equations with many asymptotically flat end points in is
the following [cf. [23,24], and references therein. The set-
ting outlined here, where we have to solve (19) and (20)
on the compact manifold has been studied in [9,25,26] ].
Let S be a compact manifold (which in our case will be
S3), denote by in a finite number of points in S, and define
the manifold S̃ by S̃ � S n

S
in. We assume that hab is a

positive definite metric on S, with covariant derivative Da

and positive scalar curvature R. Let Kab be a trace-free
symmetric tensor, which satisfies

DaKab � 0 on S̃ . (19)

Let w be a solution of

Lhw � 2
1
8

KabKabw27 on S̃ , (20)

where Lh � DaDa 2 R�8. Then, the physical fields
�h̃, K̃� defined by h̃ab � w4hab and K̃ab � w210Kab will
satisfy the vacuum constraint equations on S̃. To ensure
asymptotic flatness of the data at the points in we require
at each point in

Kab � O�jxj24� as x ! 0 , (21)

lim
jxj!0

jxjw � cn , (22)

where the cn are positive constants, and xi are normal
coordinates centered at in.

The pair �hk , Kk� has been obtained from the Kerr solu-
tion, and consequently they satisfy Eqs. (19) and (20). The
boundary conditions (21) and (22) at each of the poles are
also satisfied, since they satisfy Eqs. (12) and (18). The
Kerr metric hk satisfies (16), therefore the coefficients of
the elliptic operator Lhk satisfy the hypothesis of the ex-
istence theorems proved in [27]. In particular, they are in
Ca �S3�. From these theorems, it follows that for an arbi-
trarily chosen point i [ S3 there exists a unique positive
function wi , which satisfies

Lhk wi � 0, in S3 2 �i� , (23)

and

lim
x!0

jxjwi � 1 , (24)

at i, with jxj denoting the distance from i.
We denote by w0, wp the solutions so obtained by

choosing the point i to be �0� and �p�, respectively, and
write the Kerr conformal factor wk in the form

wk � w0 1 dwp 1 uk .

The function uk is then in Ca�S3�. The Kerr conformal
factor has been decomposed in the “punctures” w0, wp and
the regular part uk . This procedure will be generalized to
include another Kerr-like black hole.
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Consider the Kerr initial data in coordinates �r̄, u, f�.
Make a rigid rotation such that the spin points in the di-
rection of an arbitrary unit vector Sa

1 , and make a shift
of the origin r̄ � 0 to the coordinate position of an arbi-
trary point i1. Let the mass and the modulus of angular
momentum per unit mass of this data be m1 and a1. We
apply the stereographic projection (9) and the conformal
rescaling (10). In this way, we obtain a rescaled metric
h

k1
ab � h0

ab 1 a2
1f1y1

ay
1
b , where f1 and y1

a are obtained
from f and ya by the rotation and the shift of the ori-
gin. They depend on the coordinates of the point i1 and
the vector Sa

1 . In S3, this coordinate transformation is a
smooth conformal mapping with a fixed point at �0�. In an
analogous way we define the corresponding rescaled ex-
trinsic curvature Kab

k1
. Take another vector Sa

2 and another
point i2 and make the same construction. We define the
following metric

hkk
ab � h0

ab 1 a2
1f1y1

ay1
b 1 a2

2f2y2
ay2

b. (25)

By (16) we know that this metric is in W4,p�S3�. It is
also clear that for small a1 and a2 the scalar curvature is
positive. It is assumed that the latter condition is satisfied.
This is the only condition in the parameters that we impose
in order to prove existence.

Let K̄ab
k1

be the trace-free part of Kab
k1

with respect to the
metric hkk

ab. Define the tensor Kab
kk by

Kab
kk � K̄ab

k1
1 K̄ab

k2
1 �lw�ab , (26)

where �lw�ab is the conformal Killing operator l with re-
spect to the metric hkk

ab acting on a vector wa. In [27] it
has been proved that there exists a unique wa [ W2,p�S3�
such that Kkk

ab satisfies (19). Whenever a1 or a2 is equal to
zero, then Kab

kk is equal to Kab
k1

or Kab
k2

, respectively, since
the solution is unique.

Let w0, w1, and w2 satisfy (23) and (24) for �0�, �i1�, and
�i2�, respectively, with respect to the metric (25). These
solutions exist by the theorem proved in [27]. Let ukk be
the solution of the equation

Lhkkukk � 2
1
8

KkkabKab
kk w

27
kk on S̃ , (27)

where

wkk � w0 1 d1w1 sin�c1�2� 1 d2w2 sin�c2�2� 1 ukk ,

(28)

and d1 �
q

m2
1 2 a2

1, d2 �
q

m2
2 2 a2

2. Using the exis-
tence theorem proved in [27], we know that there exists a
unique, positive solution ukk [ Ca�S3� of Eq. (27). Thus,
we have constructed a solution

h̃kk
ab � w24

kk hkk
ab , K̃ab

kk � w
10
kkKab

kk , (29)

of the constraint equation. This solution has three asymp-
totic ends �0�, �i1�, and �i2�, and if a1 � a2 � 0 one ob-
tains the solution given in [7] with mass m1 and m2. This is
the reason for the factors sin�c1�2� and sin�c2�2� in (28).
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Then, at least for small a, we expect the same behavior of
the apparent horizons as the one discussed there. That is,
if the mass parameters m1 and m2 are small with respect
to the separations between the ends, only two apparent
horizons surrounding �i1� and �i2� will appear. This gives
a geometric distinction between the ends �i1�, �i2� which
have an apparent horizon around them, and �0� which has
not. Whenever the separation of the ends is comparable
with the masses, one expects that another apparent hori-
zon appears around �0�. The evolution of these data will
presumably contain an event horizon. The final picture of
the whole spacetime will be similar to the familiar “pair of
pans” shown in Fig. 60 of [21], which represents a col-
lision and merging of two black holes. Both ends �i1�
and �i2� are “Kerr” ends, because whenever m1 � a1 � 0
we obtain the Kerr initial data, and the same is true for
m2 � a2 � 0. We can expect that the geometry near each
of these ends is similar, in some sense, to the geometry of
the Kerr initial data when the masses are small with respect
to the separation. Numerical comparison for the conformal
factor, which exhibits this behavior, has been made in [15]
for the axisymmetric case.

If either a1 or a2 is equal to zero, we obtain an initial
data representing a Schwarzschild and a Kerr black hole.
It is important to note that in this case the conformal
metric (25) and the conformal extrinsic curvature (26)
are exactly the Kerr ones. Then remarkably enough,
the only new function needed in order to construct
the data in this particular case is the conformal fac-
tor wkk .

Conclusion.—We have constructed a family of initial
data that can be interpreted as representing two Kerr black
holes. It reduces exactly to the Kerr initial data when the
mass of one of them is zero. This is the first rigorous
proof of the existence of such a class of initial data. We
have chosen the ansatz (25), which is perhaps the simplest
one, but other choices are possible too. The only require-
ment we must impose on the conformal metric (25) is that
it reduces to the conformal Kerr metric when a1 or a2 is
equal to zero and satisfies (16); this is a very mild condi-
tion. It is also possible to add an extra term in the extrin-
sic curvature (26) which contains the linear momentum of
each black hole. The existence proof is exactly the same
(see [27]). However, we will not recover either Kerr or
Schwarzschild data when only one black hole is present,
since the Boyer-Lindquist slices are not boosted. This is
exactly the same situation as for the boosted data given
in [8].

In order to see whether the gravitational waves emitted
in the case of our data differ in a significant way from the
waves observed for Bowen-York data, it would be interest-
ing to compare the numerical evolution of the correspond-
ing spacetimes.
121102-4
I would like to thank J. Baker, B. Brügmann, M. Cam-
panelli, S. Husa, C. Lousto, R. Price, J. Pullin, and J. A.
Valiente for discussions, but especially H. Friedrich for a
careful reading of the manuscript.

[1] C. Bradaschia et al., Phys. Lett. A 137, 329 (1989).
[2] K. Tsubomo, M. K. Fujimoto, and K. Kuroda, in Proceed-

ings of the TAMA International Workshop on Gravitational
Wave Detection (Universal Academic Press, Tokyo, 1996).

[3] LISA, Classical Quantum Gravity 14, 1397 (1997).
[4] A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel,

S. Kawamura, F. Raab, D. Shoemaker, L. Sievers,
R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb,
and M. Zuker, Science 256, 325 (1992).

[5] K. Danzmann and the GEO Team, in Relativistic Grav-
ity Research, edited by J. Ehlers and G. Schäfer, Lecture
Notes in Physics Vol. 410 (Springer, New York, 1991),
pp. 184–209.

[6] C. Misner, Phys. Rev. 118, 1110 (1960).
[7] D. Brill and R. W. Lindquist, Phys. Rev. 131, 471 (1963).
[8] J. M. Bowen and J. W. York, Jr., Phys. Rev. D 21, 2047

(1980).
[9] R. Beig and N. Ó Murchadha, Classical Quantum Gravity

11, 419 (1994).
[10] R. Beig and S. Husa, Phys. Rev. D 50, R7116 (1994).
[11] R. Beig, in Mathematical and Quantum Aspects of

Relativity and Cosmology, edited by S. Cotsakis and
G. Gibbons, Springer Lecture Notes in Physics Vol. 537
(Springer, Berlin, 2000), pp. 55–69, also in gr-qc/0005043.

[12] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606
(1997).

[13] G. B. Cook, gr-qc/0007085.
[14] A. Garat and R. Price, Phys. Rev. D 61, 124011 (2000).
[15] W. Krivan and R. Price, Phys. Rev. D 58, 104003 (1998).
[16] P. Marronetti and R. A. Matzner, Phys. Rev. Lett. 85, 5500

(2000).
[17] N. Bishop, R. Isaacson, M. Maharaj, and J. Winicour, Phys.

Rev. D 57, 6113 (1998).
[18] J. Baker and R. Puzio, Phys. Rev. D 59, 044030 (1999).
[19] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[20] R. H. Boyer and R. W. Lindquist, J. Math. Phys. (N.Y.) 8,

265 (1967).
[21] S. W. Hawking and G. F. R. Ellis, The Large Scale Struc-

ture of Space-Time (Cambridge University Press, Cam-
bridge, 1973).

[22] R. A. Adams, Sobolev Spaces (Academic Press, New York,
1975).

[23] Y. Choquet-Bruhat, J. Isenberg, and J. W. York, Jr.,
gr-qc/9906095.

[24] Y. Choquet-Bruhat and J. W. York, Jr., in General Relativity
and Gravitation, edited by A. Held (Plenum, New York,
1980), Vol. 1, pp. 99–172.

[25] H. Friedrich, Commun. Math. Phys. 119, 51 (1988).
[26] H. Friedrich, J. Geom. Phys. 24, 83 (1998).
[27] S. Dain and H. Friedrich, gr-qc/0102047 [Commun. Math.

Phys. (to be published)].
121102-4


