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We show that even in three dimensions an antiferromagnetic spin-1 Bose-Einstein condensate, which
can, for instance, be created with 23Na atoms in an optical trap, has not only singular linelike vortex
excitations, but also allows for singular pointlike topological excitations, i.e., monopoles similar to the
’t Hooft –Polyakov monopoles. We discuss the static and dynamic properties of these monopoles.
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Introduction.—Quantum magnetism plays an important
role in such diverse areas of physics as high-temperature
superconductivity, quantum phase transitions, and the
quantum Hall effect. Moreover, it now appears that mag-
netic properties are also very important in another area,
namely Bose-Einstein condensation in trapped atomic
gases. This is due to two independent experimental
developments. The first development is the realization of
an optical trap for 23Na atoms [1], whose operation no
longer requires the gas to be doubly spin polarized and
has given rise to the creation of a spin-1 Bose-Einstein
antiferromagnet [2]. The second development is the
creation of a two-component condensate of 87Rb atoms
[3], which by means of rf fields can be manipulated so as
to make the two components essentially equivalent [4].
As a result also a spin-1�2 Bose-Einstein ferromagnet can
now be studied in detail experimentally.

The spin structure of these condensates has recently
been worked out by a number of authors [5–8] and also the
first studies of the linelike vortex excitations have appeared
[5,9,10]. An immediate question that comes to mind, how-
ever, is whether the spin degrees of freedom lead also to
other topological excitations that do not have an analogy
in the case of a single component Bose-Einstein conden-
sate. The answer to this question is in general affirma-
tive. Indeed, we have recently shown that ferromagnetic
Bose-Einstein condensates have long-lived Skyrmion exci-
tations, which are nonsingular but topologically nontrivial
pointlike spin textures [11]. Moreover, we show here that
also spin-1 Bose-Einstein antiferromagnets have pointlike
topological excitations. In particular, there exist singular
pointlike spin textures, which are analogous to the mag-
netic monopoles in particle physics discovered by ’t Hooft
and Polyakov [12]. Having done so, we then turn to the
investigation of the precise texture and the dynamics of
these monopoles.

As indicated above, Skyrmion and monopole excita-
tions have already been studied in the context of nuclear
and high-energy physics, respectively. However, in these
areas of physics there does not exist a satisfactory mi-
croscopic theory for these topological excitations. For
example, the Skyrme model gives only a rather rough de-
scription of a nucleon. Moreover, magnetic monopoles
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have never been observed experimentally. Creating such
excitations in Bose-Einstein condensed gases offers there-
fore the exciting opportunity to study, to the best of our
knowledge for the first time in a quantum fluid, the proper-
ties of Skyrmions and monopoles in exquisite detail, both
theoretically and experimentally. Undoubtedly this will
lead to important new insights into the general topic of
topological excitations in a quantum field theory.

Topological considerations.—To find the topological
excitations of a spin-1 Bose-Einstein condensate, we need
to know the full symmetry of the macroscopic wave func-
tion C�r� �

p
n�r� z �r�, where n�r� is the total density

of the gas, z �r� is a normalized spinor that determines the
average local spin by means of �F� �r� � zy�r�Fz �r�, and
F are the usual spin matrices obeying the commutation
relations �Fa, Fb� � ieabgFg . Note that here, and in
the following, summation over repeated indices is always
implied. From the work of Ho [5] we know that in the
antiferromagnetic case the mean-field interaction energy
is minimized for �F� �r� � 0, which implies that the
parameter space for the spinor z �r� is only S1 3 S2

because we are free to choose both its overall phase and
the orientation of the spin quantization axis. Introducing
the superfluid phase q �r� and the unit vector field m�r�,
this topology can also be understood explicitly from the
fact that all the spinors

z �r� �
eiq�r�
p

2

0B@ 2mx�r� 1 imy�r�
p

2 mz�r�
mx�r� 1 imy�r�

1CA � eiq �r�zAF�r�

(1)

have a vanishing average spin and hence are locally de-
generate. In quantum magnetism the vector m is known
as the Néel vector and roughly speaking corresponds to the
staggered magnetization of our itinerant antiferromagnet.

What does this tell us about the possible topological ex-
citations? For linelike defects or vortices, we can assume
z �r� to be independent of one direction and the spinor
represents a mapping from a two-dimensional plane into
the order parameter space. If the vortex is singular, this
is visible on the boundary of the two-dimensional plane
and we need to investigate the properties of a continuous
mapping from a circle S1 into the order parameter space
G, i.e., of the first homotopy group p1�G� [13]. Since
© 2001 The American Physical Society 120407-1
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p1�S1 3 S2� � Z, we conclude that an antiferromagnetic
spin-1 condensate can have vortices with winding numbers
that are an arbitrary integer. Physically, this means that by
traversing the boundary of the plane the spinor can wind
around the order parameter an arbitrary number of times.

Similarly we can also discuss singular pointlike defects.
Since the boundary of a three-dimensional gas is equiva-
lent to the surface of a three-dimensional sphere, singular
pointlike defects are determined by the second homotopy
group p2�G� [13]. Because also p2�S1 3 S2� � Z, such
topological excitations thus indeed exist in the case of a
spin-1 Bose gas with antiferromagnetic interactions. In
view of the work of ’t Hooft and Polyakov we refer to
these excitations as monopoles [14], although it would also
be justifiable to call them singular Skyrmions. In contrast
to the nonsingular Skyrmions in the Bose-Einstein ferro-
magnets, which inherently are nonequilibrium objects, the
monopoles turn out to be thermodynamically stable exci-
tations as we show next.

Monopole texture.— The grand-canonical energy of the
spinor condensate can be obtained from the usual Gross-
Pitaevskii theory, which, for the restricted parameter space
given in Eq. (1), leads to the expression

E�n, z � �
Z

dr c��r�
µ
2

h̄2=2

2m
1 Vtrap�r� 2 m

1
gn

2
jc�r�j2

1
h̄2

2m
�=m�r��2

∂
c�r� , (2)

where c�r� �
p

n�r� eiq �r� is the superfluid order parame-
ter, Vtrap�r� � mv2r2�2 is an isotropic harmonic trap-
ping potential, m is the chemical potential, and gn �
4panh̄2�m is the appropriate coupling constant for den-
sity fluctuations. Minimization of this energy determines
both the spin texture m�r� and the density profile n�r� of
the monopole [15]. Since gradients in the spin texture do
not couple to the superfluid phase q �r�, we can at this point
already conclude that the presence of a monopole will not
induce any superfluid flow in the atomic cloud. From now
on we therefore no longer consider this degree of freedom.

Interestingly, the spin texture is uniquely determined by
the fact that it should have a topological winding number
[16]

W �
1

8p

Z
dr eijkeabg≠ima≠jmb≠kmg (3)

equal to 1 and that it should also minimize the gradient
energy

Egrad�n, z � �
Z

dr
n�r�h̄2

2m
�=m�r��2. (4)

As we discuss in more detail in a moment, the latter re-
quires the spin texture to be as symmetric as possible. In
combination with the first requirement, we thus conclude
that mHP�r� � r�r for a monopole in the center of the
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trap. Indeed, a spin texture with the same winding number
can be obtained by rotating mHP�r� by an arbitrary rota-
tion matrix R�r� that depends only on the radial distance
r. As a result the gradient energy is turned into the sug-
gestive form

Egrad�n, z � �
Z

dr
n�r�h̄2

2m
j�=== 2 iA�r��mHP�r�j2, (5)

which brings out even more clearly the analogy with the
O�3� gauge theory studied by ’t Hooft and Polyakov.
In our case the vector potential is, however, defined by
A�r� � i���R21�r�===R�r���� and is always orthogonal to the
gradient of mHP�r�. The gradient energy is therefore mini-
mized for R�r� � 1, as anticipated previously.

Substituting our hedgehog solution mHP�r� for the spin
texture into Eq. (2), we see that the density profile of
the spinor condensate is found from a Gross-Pitaevskii
equation with a centrifugal barrier equal to h̄2�mr2.
Considering first the homogeneous case and writing the
superfluid order parameter as c�r� � �m�gn�1�2f�r�j�,
with j � �h̄2�2mm�1�2 the correlation length, we obtain
explicitly thatµµµ

2
1

r2

d
dr

µ
r2 d

dr

∂
1

2
r2 1 f2�r� 2 1

∂∂∂
f�r� � 0 .

(6)

We have not been able to solve this equation analytically,
but its numerical solution is shown in Fig. 1. What is most
important for our purposes, however, is the large distance
behavior of the density profile. Neglecting the gradient
terms in the left-hand side, we easily find that f�r� 	 1 2

1�r2 for r ¿ 1. Furthermore, the monopole is clearly
seen to possess a core with a typical size of the order of the
correlation length. Inside this core the density is strongly
reduced, which offers the opportunity to detect monopoles
by the same expansion experiments that have recently also
been used to observe vortices [17].

FIG. 1. Spin texture and density profile of the
’t Hooft –Polyakov monopole. The solid line shows the exact
numerical result, whereas the dashed line shows the analytic
long distance behavior n�r� 	 �m�gn� �1 2 2�j�r�2�.
120407-2



VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001
Having obtained the spin texture and the density profile
of the monopole, we are now in a position to determine
also its energy. Placing the monopole in the center of a
spherical volume with a large radius R ¿ j, we obtain

EHP �
m

an
�R 2 Rcore� , (7)

where Rcore is the effective core size of the monopole.
Its calculation requires knowledge of the complete density
profile and we find numerically that Rcore 	 1.4j. The
monopole energy thus diverges linearly with the system
size, which implies that in the thermodynamic limit only
pairs of monopoles with opposite winding numbers require
a finite energy for their creation.

The physical interpretation of Eq. (7) is that to calcu-
late the monopole energy we need to evaluate only the
gradient energy for a fixed density equal to m�gn, but
restrict the integration to the volume outside a spheri-
cal core region with radius Rcore. This interpretation is
particularly useful for a trapped spinor condensate in the
Thomas-Fermi limit, when the size RTF � �2m�mv2�1�2

of the condensate is much larger than the correlation length
j. For a monopole at position u near the center of the trap,
we find in this manner that

EHP�u� 	
2m

3an
RTF

µ
1 2

u2

R2
TF

1
u4

5R4
TF

1 · · ·

∂
, (8)

if we neglect the core contributions that are smaller by
a factor of j�RTF. The significance of this result will
become clear once we understand the dynamical properties
of the monopole.

Monopole dynamics.— In the first instance we expect
the dynamics of the monopole to be determined by
the action S�n, z � �

R
dt�T�n, z � 2 E�n, z �� with a

time-derivative term that is equal to

T�n, z � �
Z

dr n�r, t�zy�r, t�ih̄
≠

≠t
z �r, t� (9)

in the Gross-Pitaevskii theory. However, when we re-
strict ourselves to the antiferromagnetic spinor zAF�r, t�,
the time-derivative term in the action exactly vanishes
due to the normalization condition m2�r, t� � 1. To find
any dynamics for the monopole we thus need to con-
sider also fluctuations that bring the spinor condensate out
of the antiferromagnetic order parameter space. In the
Thomas-Fermi limit, the relevant dynamical part of the ac-
tion thus becomes

Sdyn�n, z � �
Z

dt

µ
T�n, z �

2
Z

dr
gs

2
�n�r, t� �F� �r , t��2

∂
,

(10)

with gs � 4pash̄2�m the appropriate coupling constant
for spin-density fluctuations. Using this action we can now
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investigate the effect of the above-mentioned fluctuations
by substituting z �r, t� � zAF�r, t� 1 dz�r, t� and expand-
ing the action up to quadratic order in dz �r, t�. Solving
then the Euler-Lagrange equation for dz �r, t� and substi-
tuting the solution back into the action, we ultimately find
the desired low-frequency result [18]

Sdyn�n, z � �
Z

dt
Z

dr
h̄2

2gs

µ
≠m�r, t�

≠t

∂2

. (11)

While performing the calculation, we must make sure that
we are not considering fluctuations of the spinor within the
antiferromagnetic order parameter space. This requires
the matrix elements z

y
AF�r, t�Fdz�r, t� to be real, because

for fluctuations within the antiferromagnetic parameter
space we have in lowest order that 0 � �F� �r, t� �
z
y
AF�r, t�Fdz �r, t� 1 dzy�r, t�FzAF�r, t�. Moreover, the

normalization of the spinor requires also that
z
y
AF�r, t�dz�r, t � � 0.

The importance of this result is twofold. First, from
Eqs. (4) and (10) we see that at the quantum level the
dynamics of the space-independent part of the vector
field m�r� is governed by the following time-dependent
Schrödinger equation:

ih̄
≠

≠t
C�m, t� � 2

h̄2

2I
===2

mC�m, t� (12)

for the wave function C�m, t�. It thus corresponds ex-
actly to a quantum rotor with a moment of inertia equal to
I � h̄2V0�m��gs, where V0�m� is the total volume of the
spinor condensate in the Thomas-Fermi limit. In an har-
monic trap the moment of inertia is thus proportional to
the 3�5 power of the total number of atoms. The eigen-
states of this Schrödinger equation are the spherical har-
monics YS,MS

�m�. In this way we thus recover the fact
that according to quantum mechanics both the total spin of
the Bose-Einstein antiferromagnet as well as its projection
on the quantization axis must always be an integer. More
precisely, since the ground state wave function is given
by Y0,0�m� � 1�

p
4p , we have actually shown that the

many-body wave function of the antiferromagnetic spinor
condensate is a singlet state exactly [7,8]. Note that physi-
cally this phenomenon is equivalent to the way in which
“diffusion” of the overall phase of a Bose-Einstein conden-
sate leads to the conservation of particle number [19,20].
The main difference is that here the diffusion takes place
on the surface of a unit sphere instead of on a unit circle.

Second, and most important for our purposes, we can
now determine the single monopole dynamics, by using
the ansatz m�r, t� � mHP�r 2 u�t�� for the texture of a
moving monopole, which is expected to be accurate for
small velocities du�t��dt and, in the inhomogeneous case,
near the center of the trap where u�RTF ø 1. Substituting
this ansatz into Eq. (11) and remembering also Eq. (8), we
find that the action for the center-of-mass motion of the
monopole becomes precisely that of a massive particle
120407-3
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SHP�u� �
Z

dt

µµµ
mHP

2

µ
du�t�

dt

∂2

2 EHP�u�
∂∂∂

, (13)

with a mass given by mHP � 2mRTF�as. The semi-
classical equation of motion for the monopole position is
therefore simply Newton’s equation

mHP
d2u�t�

dt2 � 2===uEHP�u� . (14)

In view of the fact that the energy of the monopole de-
creases as the distance to the center of the trap increases,
we conclude that in general the monopole is always accel-
erated to the boundary of the condensate. Typically it will
reach that boundary in a time interval of order

DtHP 	
p

2

s
3mR2

TF

2m

an

as
�

p

2v

s
3an

as
, (15)

which is typically about 1�v and therefore sufficiently
long for present-day experiments to be able to observe the
monopole once it is created [21]. In this context it should
be noted that all our calculations are performed at zero
temperature. In the presence of a normal component, the
monopole experiences damping, which increases the time
needed to reach the edge of the spinor condensate.

To summarize, we have investigated the most important
equilibrium and nonequilibrium properties of a monopole
in a trapped, antiferromagnetic Bose-Einstein condensate.
A further direction of research is an ab initio calculation
of the above-mentioned friction force on the monopole. In
fact, we expect the thermal cloud to lead not only to dissi-
pation but also to noise. Both effects can be conveniently
treated within the general framework of the stochastic
field theory that was developed previously for nonequi-
librium phenomena in partially Bose-Einstein condensed
gases [20]. Another interesting topic is the interaction be-
tween two monopoles and the many-body properties of a
gas of these topological objects. Finally, a very important
experimental problem is the creation of a monopole. Of
course, pairs of monopoles with opposite winding num-
bers can in principle be created in a thermal quench or by
sufficiently shaking up the spinor condensate. However,
a more controlled creation mechanism is desirable. Af-
ter submission of this Letter, such a creation mechanism
was indeed proposed by Martikainen and Suominen [22].
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These authors find that a combination of well established
phase-imprinting methods [4,21] is sufficient to create an
excited state of the spinor Bose-Einstein condensate that
ultimately relaxes to a state containing a single monopole.
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