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Resonance Superfluidity in a Quantum Degenerate Fermi Gas
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We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs
in a dilute Fermi gas. We apply our theory to consider a specific resonance in potassium (40K), and
find that for achievable experimental conditions, the transition to a superfluid phase is possible at the
high critical temperature of about 0.5TF . Observation of superfluidity in this regime would provide the
opportunity to experimentally study the crossover from the superfluid phase of weakly coupled fermions
to the Bose-Einstein condensation of strongly bound composite bosons.
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The achievement of Bose-Einstein condensation in
atomic vapors [1] has given great impetus to efforts to
realize superfluidity in dilute fermionic alkali gases. While
conditions of quantum degeneracy have been obtained in
potassium (40K) [2], the lowest achievable temperatures to
date have been limited to around 0.2TF [3]. Although this
limit is essentially technical in nature, it appears likely
that it will be necessary to utilize a strong pairing mecha-
nism yielding superfluid transition temperatures close to
this value.

Even in high-Tc superconductors, the typical critical
temperatures are of the order of 1022TF. In the context
of strong-coupling superconductivity there has been much
work on constructing minimal models to study the cross-
over from the seminal Bardeen-Cooper-Schrieffer (BCS)
theory [4] for conventional superconductivity to the Bose-
Einstein condensation of tightly bound pairs, passing
through nonperturbative regimes in Tc�TF [5,6]. In this
Letter, we treat explicitly a short range quasibound reso-
nant state by extending the theory given in Refs. [7] to
predict the existence of a Feshbach resonance superflu-
idity in a gas of fermionic potassium atoms. This system
has an ultrahigh critical phase transition temperature in
close proximity to the Fermi temperature. This is a novel
regime for quantum fluids, as illustrated in Fig. 1 where
our system and others which exhibit superfluidity or BEC
are compared.

The seminal BCS theory [4] of superconductivity ap-
plied to a dilute gas considers binary interactions between
particles in two distinguishable quantum states, say, j "� and
j #�. For a uniform system, the fermionic field operators
may be Fourier expanded in a box with periodic boundary
conditions giving wave-vector-k dependent creation and
annihilation operators a

y
ks and aks for states js�. At low

energy, the binary scattering processes are assumed to be
completely characterized by the s-wave scattering length
a in terms of a contact quasipotential U � 4p h̄2an�m,
where n is the number density. The Hamiltonian describ-
ing such a system is given by
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where ek � h̄2k2�2m is the kinetic energy, m is the mass,
and the constraint k4 � k1 1 k2 2 k3 gives momentum
conservation.

For a negative scattering length, the thermodynamic
properties of the gas show a superfluid phase transition
at a critical temperature Tc which arises due to an insta-
bility towards the formation of Cooper pairs. When the
gas is dilute, as characterized by the inequality njaj3 ø 1
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FIG. 1. A log-log plot showing six distinct regimes for quan-
tum fluids. The transition temperature Tc is shown as a function
of the relevant gap energy 2D. Both quantities are normalized
by an effective Fermi temperature T �

F . For the BCS systems in
region (a), and the systems in the crossover region (b), 2D is the
energy needed to break up a fermion pair, and T �

F is the Fermi
energy. For the systems in region (c), which are all strongly
bound composite bosons and exhibit BEC phenomenology, 2D
is the smallest energy needed to break the composite boson up
into two fermions, i.e., ionization to a charged atomic core and
an electron, and T �

F is the ionic Fermi temperature.
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(or equivalently kF jaj ø 1 where kF is the Fermi wave
number), the application of mean-field theory gives a well-
known solution for the ratio of Tc to the Fermi temperature
TF [5]:

Tc

TF
� exp

µ
2

p

2jajkF

∂
. (2)

The exact prefactor to the exponential depends on the pre-
cise form of the analytic integral approximations made in
the derivation. Several papers have pointed out that the
presence of a scattering resonance in dilute alkali gases
can be used to obtain a very large negative value for the
scattering length [8]. This promises the opportunity for
the system to enter the high-Tc superfluidity regime as the
ratio in Eq. (2) approaches unity. However, direct appli-
cation of the BCS theory close to resonance then becomes
speculative due to the potential breakdown of a number of
underlying assumptions: (1) Exactly on resonance the the-
ory fails as the scattering length passes through 6` and
the Hamiltonian in Eq. (1) cannot be defined. (2) For the
mean-field approach to be accurate it is required that there
be many particles inside a volume associated with the spa-
tial scale of a Cooper pair. This condition begins to break
down as Tc approaches TF . (3) The theory of the dilute gas
is formulated on a perturbation approach based on an ex-
pansion in the small parameter njaj3. When this parameter
approaches unity the perturbation theory fails to converge.
These points show that care should be taken in applying
Eq. (2) near the point of resonance where the basis for the
conventional mean-field theory is not well founded.

Despite these limitations, on general grounds, one would
expect to be able to derive a renormalizable low-energy ef-
fective field theory even in close proximity to a resonance.
This statement is based on the identification that at relevant
densities the range of the interparticle potential is always
orders of magnitude smaller than the interparticle spac-
ing. Here we present a theory of superfluidity in a gas of
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dilute fermionic atoms which handles correctly the scatter-
ing resonance and places the transition temperature to the
superfluid state in the experimentally accessible range.

While the scattering length a usually characterizes the
range of the interatomic potential for a collision, this
is a poor approximation in the vicinity of a scattering
resonance. The scattering properties are completely deter-
mined by the positions of the bound states in the interac-
tion potentials. In a multichannel system, a bound state
may cross the threshold as a function of magnetic field and
enter the continuum, resulting in a field-dependent Fesh-
bach scattering resonance [9]. As this occurs, the scattering
length becomes strongly dependent on the field, and ex-
actly at threshold it changes sign by passing through 6`.

When such resonance processes occur, it is necessary to
formulate the Hamiltonian by separating out the resonance
state and treating it explicitly. This is motivated by the mi-
croscopic identification of two types of scattering contribu-
tions: one from the scattering resonance, and one from the
background nonresonant processes that includes the contri-
butions from all the other bound states. The nonresonant
contributions give rise to a background scattering length
abg which is a good characterization of the potential range.
The corresponding quasipotential in that case is given by
Ubg � 4p h̄2abgn�m. The Feshbach resonance occurs due
to a coupling with a molecular state, that is long-lived in
comparison with characteristic nonresonant collision time
scales. This state is a composite boson which is described
by bosonic annihilation operators bk. It is parametrized by
a detuning energy from threshold, denoted by 2n, that is
dependent on the value of the magnetic field. The coupling
strength of bk to the two-particle continuum is well char-
acterized by a single coupling constant g, independent of
k. These considerations imply that the Hamiltonian given
in Eq. (1) is not sufficient to account for the important
resonance processes and must be extended to incorporate
explicitly the coupling between the atomic and molecular
gases:
H � 2n
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Evolution generated by this Hamiltonian conserves the
particle number N �

P
k�ay

k"ak" 1 a
y
k#ak#� 1 2

P
k b

y
k bk.

Note that the Hamiltonian does not contain a explicitly, and
that the field dependence of the scattering is completely
characterized by the parameters: g, n, and Ubg. The mag-
nitude of g is derived in the following way. We define k

as the product of the magnetic field width of the resonance
and the magnetic moment difference of the Feshbach state
and the continuum state. For large values of n, the boson
field bk can be adiabatically eliminated from the theory,
and then g �

p
kUbg is required in order for the scatter-

ing properties to have the correct dependence on magnetic
field [10].
The essential point is that this Hamiltonian, founded on
the microscopic basis of resonance scattering, is well be-
haved at all detunings n; even for the pathological case of
exact resonance. The diluteness criterion is now given by
constraints which require both the potential range and the
spatial extent of the Feshbach resonance state to be much
smaller than the interparticle spacing (e.g., njabgj

3 ø 1).
We apply this Hamiltonian to derive the self-consistent

mean fields for given thermodynamic constraints by formu-
lating a Hartree-Fock-Bogoliubov theory [11]. The mean
fields present include the fermion number f �

P
k�ay

k"ak"�,
the molecule field fm � �bk�0� taken to be a classical
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field, and the pairing field p �
P

k�ak"a2k#� [12]. It is
well known that such a theory must be renormalized in or-
der to remove the ultraviolet divergence which arises from
the incorporation of second-order vacuum contributions.
This implies replacing the physical parameters in the Ham-
iltonian, U, g, and n, by renormalized values so that ob-
servables are independent of a high momentum cutoff used
in the formulation of the effective field theory [13]. In
order to diagonalize the Hamiltonian, we construct Bo-
goliubov quasiparticles according to the general canonical
transformation [14]√

ak"

a
y
2k#

!
�

√
cosu 2eig sinu

eig sinu cosu

! √
ak"

a
y
2k#

!
. (4)

Given single particle energies, Uk � ek 2 m 1 Uf,
where m is the chemical potential, and the gap parameter
in the quasiparticle spectrum D � Up 2 gfm, the two
transformation angles are specified as tan�2u� � jDj�Uk

and fm � jfmjexp�ig�. The corresponding quasiparticle
spectrum is Ek �

p
U2

k 1 D2. Dropping terms of higher
order than quadratic in the fermion operators gives the
resulting many-body Hamiltonian

H 2 mN � 2�n 2 m� jfmj
2

1
X
k

�Uk 1 Ek�ay
k"ak" 1 a

y
k#ak# 2 1�� ,

(5)
which is now in diagonal form.

The next task is to calculate the thermodynamic solu-
tions. Equilibrium populations for the quasiparticles are
given by the Fermi-Dirac distribution. The fermion num-
ber and pairing field are not only inputs to the Hamiltonian,
but also determine the quasiparticle spectrum. Therefore,
they must be self-consistent with the values derived by
summing the relevant equilibrium density matrix elements
over all wave numbers. In practice, at a given tempera-
ture, chemical potential, and molecule number fm, this re-
quires an iterative method to locate self-consistent values
for f and p. The value of fm is calculated by minimizing
the grand potential FG � 2kbT lnJ at fixed temperature
and chemical potential, with kb denoting Boltzmann’s con-
stant. The partition function J � Tr 	exp�2�H 2 mN��
kbT�
 is found from Eq. (5). This procedure is mathemati-
cally equivalent to minimizing the Helmholtz free energy
at fixed temperature and density and corresponds uniquely
to the maximum entropy solution. This solution has an as-
sociated particle number, �N� � 2≠FG�≠m, taken at con-
stant temperature and volume, which must match the actual
particle density of the gas, so that the final step is to ad-
just the chemical potential until this condition is satisfied.
The whole procedure is repeated over a range of tempera-
tures to determine the locus of thermodynamic equilibrium
points. For large positive detunings, where the molecule
field could be eliminated from the theory entirely, regular
BCS theory emerges. For this case, when the scattering
length a is negative the behavior of the critical tempera-
ture on 1�a is given by the usual exponential law [5].
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As an example of the application of this theory, we
study the experimentally relevant system of fermionic 40K
atoms equally distributed between the two hyperfine states
which have the lowest internal energy in the presence of
a magnetic field. The values of our interaction parameters
abg � 176a0 and k�kb � 657 mK are obtained from [15].
We fix the total density to be n � 1014 cm23, a typical ex-
perimental value expected for this quantum degenerate gas
in an optical trap. We set the detuning to be n � 1EF

so that the quasibound state is detuned slightly above the
atomic resonance. For a temperature above Tc, the grand
potential surface is shaped like a bowl, and the value of fm

which minimizes the grand potential is fm � 0, associated
with the self-consistent solution p � 0. For T , Tc, the
grand potential surface is shaped like a Mexican hat, and
its minimum is given by a fm with nonzero amplitude and
an undetermined phase. The superfluid phase transition
therefore leads to a spontaneously broken symmetry. The
value of Tc can be clearly found from Figs. 2 and 3, where
we show the chemical potential, the molecular density, and
the gap as a function of temperature. We find for our pa-
rameter set for 40K and almost zero detuning a remarkably
high value for the critical temperature Tc � 0.5TF , i.e.,
Tc � 0.6 mK. Furthermore, we find a weak dependence
of Tc � 0.5TF on the density, so that the value of Tc has
more or less the same density behavior as TF . When we in-
crease the detuning to n � 117.6EF (this corresponds to
a magnetic field detuning of 0.5 G away from the Feshbach
resonance), the value of Tc drops to approximately 0.25TF .

The system of 40K atoms, equally distributed among
the two lowest hyperfine states, is a good candidate for
demonstrating the superfluid phase transition. It not only
exhibits a Feshbach resonance, but also the inelastic binary
collision events are energetically forbidden. Three-body
interactions are highly suppressed, since the asymptotic
three-body wave function should consist of a product
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FIG. 2. Chemical potential as a function of temperature for the
system of resonance pairing (solid line). The second-order phase
transition occurs at Tc � 0.5TF where a clear cusp is visible.
The dashed line shows the chemical potential of a noninteracting
Fermi gas.
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FIG. 3. The temperature at the phase transition is also visible
from the amplitude of the molecular field. This amplitude is
nonzero only when the broken symmetry exists in the region
T , Tc . For T � 0, the molecules form a Bose condensed
fraction of 1.5% of the total gas sample. The inset shows the
behavior of the gap D � Up 2 gfm . The critical temperature
Tc can be related to the value of the gap at T � 0. For compari-
son, in superconductors the analogous gap is simply the binding
energy of a fermion pair.

of three s-wave two-body scattering wave functions. In
a three-body interaction, two particles are always in the
same initial hyperfine state, and therefore the correspond-
ing s-wave state is forbidden. The only three-body relax-
ation could come from asymptotic p waves, but these have
very little contribution at the low temperatures considered.
Although the detailed three-body collision problem is an
intricate one, this asymptotic statistical effect should lead
to a large suppression of the vibrational relaxation of quasi-
bound molecules.

Current experimental techniques for ultracold gases do
not produce samples which are spatially uniform. An op-
tical dipole trap may be needed to confine the high field
seeking atoms, and the conditions for the superfluid phase
transition would be satisfied first in the trap center where
the density is highest. The presence of the quasibound
molecules may be a very useful aspect allowing direct
observation of the phase transition through imaging the
molecular field.

In conclusion, we have shown that resonance pairing in
an alkali gas yields a quantum fluid that can undergo a su-
perfluid phase transition at a temperature comparable to the
Fermi temperature. This extraordinary property places this
system in a regime which lies in between BCS-like super-
conductors, and bosonic systems which may undergo BEC.
Since the transition temperature is larger than the lowest
temperatures already achieved in a degenerate Fermi gas,
it should be possible to study this new type of quantum
matter and to quantitatively compare with our predictions.
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Note added.—A similar treatment has recently been
proposed by Timmermans et al. [16].
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