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Quantum Phases of Vortices in Rotating Bose-Einstein Condensates
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We investigate the ground states of weakly interacting bosons in a rotating trap as a function of
the number of bosons, N , and the average number of vortices, NV . We identify the filling fraction
n � N�NV as the parameter controlling the nature of these states. We present results indicating that, as
a function of n, there is a zero temperature phase transition between a triangular vortex lattice phase,
and strongly correlated vortex liquid phases. The vortex liquid phases appear to be the Read-Rezayi
parafermion states.
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A fundamental characteristic of condensed Bose systems
is their response to rotation [1]. A transition to a “normal”
phase might be expected at sufficiently high angular ve-
locities, v, of the container (or trap) by loose analogy with
a superconductor in a magnetic field. At zero temperature
this phase would constitute a novel uncondensed ground
state. Such a regime is entered when the vortex cores start
to overlap. The corresponding value of v is unattainable
with bulk 4He, but may be achievable in the very dilute
degenerate atomic gases initially explored in Ref. [2], and
studied extensively in Refs. [3–9]. Apart from the iden-
tification [5] of the Laughlin state as the ground state at
sufficiently high v, work on the most interesting regime of
large numbers of vortices has been restricted to either mean
field theory [3] or exact diagonalization [5–8]. These two
approaches have exhibited apparently contradictory pic-
tures. Within Gross-Pitaevskii (GP) mean field theory,
the ground states are vortex lattices (distorted by the con-
finement), with broken rotational symmetry [3]. On the
other hand, exact diagonalizations have identified ground
states which do not have crystalline correlations of vortex
locations [5]; they are strongly correlated vortex liquids,
closely related to incompressible liquid states responsible
for the fractional quantum Hall effect [5–7].

Here we present results of extensive exact diagonaliza-
tions (EDs) that elucidate the relationship between these
two pictures. By using a periodic geometry, we have been
able to study systems containing many vortices up to bo-
son densities far in excess of previous EDs. Our results
indicate that both crystalline and liquid phases of vortices
exist. A clean distinction between these phases can be
made only for a large number of vortices. In this limit, we
argue that there is a zero-temperature phase transition as a
function of the “filling fraction,” n � N�NV , the ratio of
the number of bosons, N , to the average number of vor-
tices, NV . For large n, the ground state is a vortex lattice
(characterized by broken translational/rotational symme-
try). For small n the ground states are strongly correlated
vortex liquids. We find that the vortex liquid ground states
are related to the Read-Rezayi “parafermion” states [10]
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that were introduced in the context of fractional quantum
Hall systems.

In a frame of reference rotating with angular veloc-
ity vẑ, the Hamiltonian for a particle of mass m in an
(isotropic) harmonic trap of natural frequency v0 is
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The second form indicates the equivalence to the Hamil-
tonian of a particle of charge q� experiencing an effective
magnetic field B� � = 3 �mvẑ 3 r�q�� � �2mv�q��ẑ
(the particle also feels a reduced xy confinement). Of par-
ticular importance to our discussion is the average filling
fraction, n, for the bosons in this effective magnetic field.
For N bosons spread over an area A, one finds
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where NV is the average number of vortices. For large NV

the vortex density is approximately uniform, and NV �
�2mvA��h, or (equivalently) NV � 2L�N [11], where L
is the total angular momentum in units of h̄.

We now introduce repulsive interactions [12]

V � g
NX

i,j�1

d�ri 2 rj� , (2)

with g � 4p h̄2a�m, chosen to give the correct s-wave
scattering length a. Throughout this work, we make use of
the limit of weak interactions formulated in Ref. [2]. For
g ø h̄v0ā3, with ā the interparticle spacing, the bosons
are restricted to single-particle states in the lowest Landau
level, and lowest oscillator state of z. For v � v0, the
repulsive interactions give rise to the appearance of rotating
(vortex) ground states [3–9].

GP theory [3] takes account of interactions by finding
the fully condensed state that minimizes the total energy.
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In EDs [5–7], the ground state is found by diagonalizing
(2) within the set of all states of N bosons with fixed total
angular momentum L (L is conserved by interactions). An
important distinction between these two approaches is that
the GP ground states exhibit broken rotational symmetry
[3], while the ED ground state is necessarily an eigenstate
of angular momentum, L. However, by performing EDs
on large numbers of bosons (up to N � 30 at L � 2N),
we find that, as N becomes large at fixed L�N , a macro-
scopic number of quasidegeneracies appear between states
with different L. This signals the emergence of broken ro-
tational symmetry. Indeed, it appears from these and other
[8,9] studies that as N becomes large for fixed L�N , there
is a crossover to a regime in which GP theory is essentially
correct. We believe that this crossover is related to the
phase transition, discussed in detail below, between vortex
liquids at small n, and a vortex lattice at large n. Applying
a simple Lindemann criterion [13], one finds that a trian-
gular vortex lattice is unstable to quantum fluctuations for
n & 14. The crossover to GP behavior for increasing N
at fixed L�N is the remnant of this phase transition in a
system with a finite number of vortices NV � 2L�N .

To investigate in detail the dependence of the ground
state on n, we have conducted extensive (Lanczos) diago-
nalizations in a toroidal geometry [14]. This periodic
geometry represents the bulk of a system containing a
large number of vortices. We consider a torus of sides a
and b. There are then NV � �2mvab��h � ab�q�B��h�
vortices, which is the number of single-particle states on
the torus in the lowest Landau level [14], and hence an in-
teger. Thus, both N and NV are integers, and n � N�NV

is a rational fraction. Finally, we classify all states by
the Haldane momentum [15], which runs over a Brillouin
zone containing N̄2 points, where N̄ is the greatest com-
mon divisor of N and NV . In the following we shall re-
fer to the x and y momenta by the dimensionless vector,
�Kx, Ky �, using units of �2p h̄�a� and �2p h̄�b�. We re-
port only positive values of Kx , Ky up to the Brillouin zone
boundary [states at �6Kx , 6Ky� are degenerate by sym-
metry]. We also choose to measure energies in units of
g��

p
4p �3�, where � �

p
h̄��q�B�� �

p
h̄��2mv0� is the

magnetic length at v � v0.
We start by applying Gross-Pitaevskii theory [3] on the

torus. In general, the GP ground state is a vortex lattice,
with broken translational symmetry: the wave function
is not an eigenstate of the Haldane momentum, but has
weight at a set of reciprocal lattice vectors (RLVs). While
the symmetry of the lattice depends, in general, on NV and
the aspect ratio a�b, the absolute minimum of energy is
always obtained for a triangular vortex lattice [16].

In ED studies, the ground state is necessarily an
eigenstate of the Haldane momentum. The signature of
translational symmetry breaking is the development of
quasidegenerate levels at the set of momenta given by the
RLVs of the broken symmetry lattice [17]. To search for
such degeneracies, we show in Fig. 1 the evolution with
n of the excitation energies for NV � 8 vortices at an
120405-2
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FIG. 1. Solid lines: Excitation energies at momenta measured
relative to the ground state, for NV � 8, a�b �

p
3�4 (inset

shows the GP ground state: dark � low boson density). The
excitation energies at the RLVs of the triangular lattice (filled
symbols) collapse at n � 6, signalling the onset of a ground
state quasidegeneracy; all other momenta retain nonzero exci-
tation energies (two such momenta are shown as open sym-
bols). Dashed line: The excitation energy at one RLV �2, 0� for
NV � 6 and a�b � 1�

p
3, showing that the collapse at n � 6

initiates an exponential decrease with n.

aspect ratio �a�b �
p

3�4� for which the GP ground state
is a triangular lattice.

A collapse of the excitation energies at the RLVs of a
triangular lattice is observed at n � 6. Similar plots for
NV � 4, 6 indicate that the excitation energies at RLVs fall
exponentially with n for n * 6 (shown in Fig. 1 for one
RLV for NV � 6). For n � 15 at NV � 6 the excitation
energies are 6 orders of magnitude smaller at the RLVs
than at any other momentum. This strong quasidegeneracy
at the reciprocal lattice vectors of the lattice formed in GP
theory indicates a strong tendency to broken translational
symmetry [17]. GP theory accurately describes the states
at large values of n.

We view the collapse of the excitation gaps at n � 6 as
an indication, in this finite-size system, of a true phase tran-
sition from translationally invariant “vortex-liquid” phases,
to a (triangular) vortex lattice. The phase transition is
rounded due to the finite number of vortices, and becomes
sharper for larger NV (over the range of NV we can study).
Note that we have chosen aspect ratios that are commen-
surate with a triangular lattice, which is likely to help sta-
bilize the vortex lattice. Similar plots at other aspect ratios
show transitions to a vortex lattice at larger values of n

(up to nc � 15 for NV � 4). One should therefore view
nc � 6 as a lower bound on the critical value of n at which
crystallization occurs.

We now turn to discuss the vortex liquids at n & 6. In
this regime, we find incompressible liquid states similar to
those in fractional quantum Hall systems. Some of these
incompressible states can be accounted for by the use of
a composite fermion construction that has previously been
120405-2
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shown to describe accurately ED results on small systems
in the disk geometry [6]. In the present uniform geome-
try, this theory predicts a sequence of incompressible states
at n �

ncf

ncf 11 � 1
2 , 2

3 , 3
4 , 4

5 , . . . , 5
4 , 4

3 , 3
2 , 2, `, which is a bo-

sonic version of the Jain sequence of fractional quantum
Hall states [18]. Many of the strongest incompressible
states we find cannot be accounted for in this way. In par-
ticular, the largest (finite) value in the composite fermion
sequence is n � 2, while the transition to a vortex lattice
does not occur until n � 6. To investigate the liquid states
in this regime, we plot in Fig. 2 the energy gaps as a func-
tion of n for NV � 6 vortices. The energy gap is related
to the discontinuity in the chemical potential. To minimize
finite-size effects, we define the gap D by

D�N� � N

∑
E�N 1 1�

N 1 1
1

E�N 2 1�
N 2 1

2 2
E�N�

N

∏
, (3)

which reduces to the standard definition as N ! `.
As well as the Laughlin state at n � 1

2 [5], incom-
pressible states appear clearly in Fig. 2 at n � 1, 3

2 , 2, 5
2 ,

3, 7
2 , 4, 9

2 , 5, 6 (the loss of gaps for n * 6 is another in-
dication of the transition to the vortex lattice, perhaps re-
entrant around n � 6). It is not immediately apparent how
to construct incompressible states for this sequence of n.
One possibility is that the vortices themselves are forming
Laughlin states. This would provide a set of states with
vortex filling fraction nV � 1

2 , 1
4 , 1

6 , . . . [19], and hence
n � 1�nV � 2, 4, 6, . . . . However, this construction does
not account for states at n � 1, 3

2 , 5
2 , 3, 7

2 , 9
2 , 5 [20]. More-

over, the trial wave functions of this form that we have
tested (on a disk) have high interaction energies: while
they keep the vortices apart, they do not introduce fa-
vorable correlations between the bosons. States of this
type are likely to describe systems in which the underly-
ing interactions can be described as repulsive two-body
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FIG. 2. Energy gap (3) as a function of n for NV � 6 vortices,
at a�b � 1�

p
3. Upward spikes signal values of n for which

the ground state is incompressible. The collapse of the gaps at
n � 6 indicates the transition to the vortex lattice phase. (Inset
shows the density of the GP ground state.)
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forces between vortices [13,19,21]. They do not pro-
vide an accurate description in the present situation, where
the interactions cannot be represented by pairwise vortex
interactions [22].

A clue to the nature of the incompressible vortex liquid
states lies in the existence of an incompressible state at
n � 1, which also cannot be accounted for in terms of
noninteracting composite fermions. Rather, this state is
well described [23] by the Moore-Read (“Pfaffian”) wave
function [24]. We find that the exact ground state has large
overlap with the Moore-Read state at the Haldane momenta
for which it can be constructed on a torus [25].

Motivated by this success, we have compared the in-
compressible states at higher integer and half-integer n

with parafermion wave functions introduced by Read and
Rezayi [10] as generalizations of the Moore-Read state.
These states may be represented [26] as a (symmetrized)
product of k Laughlin states via

C�k���zi	� � S

"
N�kY

i,j[A

�zi 2 zj�2
N�kY

l,m[B

�zl 2 zm�2 . . .

#
,

(4)

where z � x 1 iy, and we omit the exponential factor of
lowest Landau level states as usual. The symbol S indi-
cates symmetrization over all partitions of N particles into
sets A, B, . . . , of N�k particles (we assume that N is di-
visible by k). The cases k � 1 and k � 2 correspond to
the Laughlin and Moore-Read wave functions. For gen-
eral k, the wave function (4) describes a system with fill-
ing fraction n�k� � N2�2L � k�2, and is a zero energy
eigenstate of a �k 1 1�-body version of the repulsion (2).

The Read-Rezayi states provide a consistent interpreta-
tion of the incompressible states in Fig. 2: they identify
the sequence of incompressible states observed in the EDs
(n � k

2 with integer k); they have large overlaps with the
exact wave functions, at least up to n � 3 (the largest n

for which we have made the comparison). We construct
the Read-Rezayi states on the torus by diagonalizing the
�k 1 1�-body force law directly to find the zero energy
eigenstates. In general, we find more than one zero energy
eigenstate, and recover a total ground state degeneracy on
a torus of k 1 1, consistent with Ref. [10]. The overlap
of the exact ground states of the two-body force (2) with
the Read-Rezayi states are given in Table I for n � k

2 . For
comparison, the overlaps with the GP ground state are also
shown.

In conclusion, we have shown that the ground states of
weakly interacting bosons in a rotating trap exhibit both
vortex lattices and incompressible vortex liquids. A clear
distinction between these phases appears for a large num-
ber of bosons, N , and vortices, NV , and is controlled by
the filling fraction n � N�NV . Vortex liquid phases ap-
pear for n & nc and vortex lattices appear for n * nc.
A Lindemann criterion suggests nc � 14, while exact di-
agonalizations indicate nc � 6. Current experiments [27]
with N � 105 and NV � 10 are deep in the regime in
120405-3
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TABLE I. Wave function comparisons of the exact ground states of the two-body force law
at n � k�2, for NV � 6 and a�b � 1�

p
3. In each case we report the following: the Haldane

momenta at which Read-Rezayi states exist, with degeneracies; the overlap of the exact ground
state with the Read-Rezayi state (where there is more than one such state, we report the total
overlap within this set); the overlap of the exact ground state with the GP ground state (we first
project the GP state onto each component of momentum; N/W indicates that the GP ground
state has no weight at this momentum).

k n �Kx , Ky� 3 degeneracy j
C�k� jC�j j
CGP jC�j

1 1�2 (Laughlin) �0, 0� 3 2 1.000 0.555

2 1 (Moore-Read) �3, 3� 3 1 0.989 N/W
2 1 (Moore-Read) �3, 0� 3 1 0.982 0.408
2 1 (Moore-Read) �0, 3� 3 1 0.981 0.493

3 3�2 �0, 0� 3 4 0.967 0.234

4 2 �0, 0� 3 2 0.956 0.242
4 2 �3, 0� 3 1 0.966 N/W
4 2 �0, 3� 3 1 0.935 N/W
4 2 �3, 3� 3 1 0.844 0.547

5 5�2 �0, 0� 3 6 0.956 0.163

6 3 �3, 3� 3 2 0.960 N/W
6 3 �3, 0� 3 2 0.944 0.198
6 3 �0, 3� 3 2 0.744 0.534
6 3 �0, 0� 3 1 0.852 N/W
which the ground state is a vortex lattice. Experiments
that access the quantum-melted vortex liquid phases will
require specific attention to small system sizes and high
angular momentum. Our results indicate that novel corre-
lated states emerge in this regime, which are well described
by the Read-Rezayi parafermion states whose excitations
obey non-Abelian statistics [10].
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