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Casimir Interaction among Objects Immersed in a Fermionic Environment
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Using ensembles of two, three, and four spheres immersed in a fermionic background we evaluate the
(integrated) density of states and the Casimir energy. We thus infer that for sufficiently smooth objects,
whose various geometric characteristic lengths are larger then the Fermi wave length one can use the
simplest semiclassical approximation (the contribution due shortest periodic orbits only) to evaluate the
Casimir energy. We also show that the Casimir energy for several objects can be represented fairly
accurately as a sum of pairwise Casimir interactions between pairs of objects.
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In 1948 Casimir predicted the existence of a very pe-
culiar effect, the attraction between two metallic parallel
plates in vacuum [1]. The existence of such an attraction
has been confirmed experimentally with high accuracy
only recently [2]. The origin of this attractive force
can be traced back to the modification of the spectrum
of zero point fluctuations of the electromagnetic field.
Similar phenomena are expected to exist for various other
(typically bosonic) fields [3,4], and the corresponding
forces are referred to as Casimir or fluctuating interac-
tions. A related interaction arises when the space is filled
with (noninteracting) fermions, which is particularly rele-
vant to the physics of neutron stars [5,6] and quark gluon
plasma [7]. Spin-orbit interaction will be neglected as well.
One of the simplest cases corresponds to nuclei embedded
in a neutron gas. These, however, could be replaced with
buckyballs immersed in an electron gas, in liquid mer-
cury, for example. Particularly attractive candidates for the
study of this type of Casimir effects in essentially perfect
degenerate Fermi systems are the dilute atomic Fermi
condensates [8].

In the case of two parallel impenetrable planes, di-
mensional arguments suggest that the dependence of the
Casimir energy for fermions on the distance between the
two planes has the form

EC � mF�kFd� , (1)

where m � h̄2k2
F�2m is the chemical potential, kF is the

Fermi wave vector, and d is the distance between the two
planes. For this simple geometry it is straightforward to
evaluate the function F�kFd� [5]. One has to be careful
and specify whether the calculation should be performed
at fixed particle number or fixed chemical potential, as one
can easily show that the Casimir energy has a different
behavior in these two limits.

For more complicated geometries the evaluation of the
Casimir energy is generally a rather involved, even though
straightforward, numerical procedure. Our main goal is
to reach a qualitative understanding of the Casimir energy
in the case of complicated geometries. We shall consider
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mainly two obvious limits, when the objects immersed in
the Fermi environment are either much smaller or much
larger than the Fermi wave length. The limit of small scat-
terers is relatively easy to treat and is considered mostly
for the completeness of the analysis. We show here that
the case of large scatterers can be treated quite accurately
using semiclassical methods at practically all separations.
The most important conclusion we are able to draw from
our study, however, is that the Casimir interaction energy
in the case of more than two scatterers can be evaluated
quite accurately as a sum of pairwise interactions between
these scatterers. This conclusion comes to some extent as
a surprise, since it is known that Casimir energy is not
pairwise additive—in other words, the interaction among
extended objects cannot be evaluated as a sum of pairwise
interactions; see, e.g., Ref. [3,4].

Let us consider at first the case of two impenetrable
spheres of radius a at a distance r $ 2a between their cen-
ters. In order to calculate the Casimir energy we shall rep-
resent the sufficiently smoothed fermion density of states
(smoothing is over an energy interval larger than the level
spacing in the volume V of the entire system):

g�´, a, r� � g0�´� 1 gW �´, a� 1 gC�´, a, r� , (2)

where g�´, a, r� is the total fermion density of states, g0�´�
is the density of states in the absence of scatterers (ideal
Fermi gas), gW�´, a� is the correction to the density of
states arising from the presence of two spheres infinitely
apart from each other, and gC�´, a, r� is the remaining part,
which is of central interest to us here [in the following, we
shall not make explicit the a or r dependence, but show
only the energy (´) dependence].

In the case of N scatterers the Krein formula [9,10] pro-
vides a link between the N-body scattering matrix SN �´�
and the change in the density of states due to the presence
of N scatterers, namely

dg�´� � g�´� 2 g0�´� �
1

2pi
d ln detSN �´�

d´
. (3)

Following Refs. [11], the determinant of the SN �´� matrix
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can be represented as follows:

dg�´� �
1

2pi
d ln detSN �´�

d´
� gW �´� 1 gC�´�

�
1

2pi
d
d´

ln

"
NY

j�1

detS1� j, ´�

#

1
1

2pi
d
d´

ln

"
detMy�´��
detM�´�

#
, (4)

where M�´� is a Koringa-Kohn-Rostoker (KKR) multiple
scattering matrix [12]. gW �´� determines the change in the
density of states due to the presence of isolated scatterers,
which in the case of large scatterers is given basically by
a Weyl formula; see Refs. [13,14] for various examples
and general formulas. gC�´�, which is determined by the
multiple scattering KKR matrix M�´�, vanishes in the limit
of infinitely separated scatterers and is the only part of the
density of states which depends on the relative arrangement
of the scatterers. The Casimir energy at fixed particle
number can then be introduced as

EC �
Z m

2`
´g�´� d´ 2

Z m0

2`
´�g0�´� 1 gW �´�� d´ (5)

�
Z m0

2`

�´ 2 m0�gC�´� d´ � 2
Z m0

2`

NC�´� d´ , (6)

N �
Z m

2`

g�´� d´ �
Z m0

2`

�g0�´� 1 gW �´�� d´ , (7)

NC�´� �
Z ´

2`
de gC�e� , (8)

where the omitted terms are O �V21�. N is the total num-
ber of fermions, m and m0 are the values for the chemical
potential with the scatterers at finite and infinite separa-
tion from each other, respectively, and NC�´� is the rele-
vant correction to the integrated density of states. Strictly
speaking, the quantities g�´� and g0�´� are infinite, as they
are proportional to the volume V of the entire space. This
redundant divergence can be handled easily by considering
first a very big box, the volume of which is subsequently
taken to infinity. One can then show that EC has a well-
defined and finite value in this limit.

Using the explicit formulas for the KKR matrix from
Ref. [11], one can compute numerically gC�´� for various
arrangements of hard spherical (or circular in 2D) scatter-
ers. It is possible to obtain significantly simpler expres-
sions for the (integrated) density of states in the limit of
very small and very large scatterers. If the wave length
l � 2p�k �´ � h̄2k2�2m� is much larger than the radii
of the scatterers and the scatterers do not overlap, then one
can show that the KKR matrix M�´� is given by (see [15]
for the analog in the 2D case)

�M�´��nm � dnm 2 �1 2 dnm�fn�´�
exp�ikrnm�

rnm
, (9)

where the indices n, m � 1, . . . , N run over the scatterers,
rnm is the distance between the centers of the nth and mth
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scatterers, and fn�´� is the s-wave scattering amplitude on
the nth scatterer. In the case of two spheres of radius a,
with their centers r apart �r ¿ a� one obtains

NC �´� � n
a2

pr2 sin�2k�r 2 a�� 1 O

µ
�ka�3,

a4

r4

∂
,

(10)

where n is the spin degeneracy factor. The next order
correction arises from p-wave scattering. In the case of
a finite radius a, one can use the Gutzwiller trace formula
to determine this correction to the (integrated) density of
states semiclassically �scl� [14]

dgscl�´� � n
X
po

�21�mpo Tppo

p h̄
q
jdet�Mpo 2 1�j

cos

µ
Spo

h̄

∂
, (11)

Nscl�´� � n
X
po

�21�mpo

np
q
jdet�Mpo 2 1�j

sin

µ
Spo

h̄

∂
, (12)

where the summation is over periodic orbits �po�, Tppo

and n are the period and number of repetitions of the
primitive periodic orbit �ppo�, Mpo , Spo , and mpo are the
stability matrix, classical action, and Maslov index (which
counts the number of bounces under Dirichlet boundary
conditions) of the po [14]. Taking into account only the
contribution arising from the single po of length 2�r 2

2a�, with no repetitions, one derives the following result:

NC�´� � n
a2

4pr�r 2 2a�
sin�2k�r 2 2a�� . (13)

At large distances �r ¿ a� the leading term in both cases
(small and large scatterers) has the same analytical struc-
ture, apart from an overall numerical factor. The kr ¿ 1
limit of Eq. (13) can be reproduced from the KKR matrix
in the case of large spheres �ka . 1� as well. One can
expect that the semiclassical result (13) is reasonably
accurate when the reduced action along the classical po
is larger than unity, i.e., when Spo�h̄ � 2k�r 2 2a� . 1,
and that this approximation should fail when the two
spheres are very close. Surprisingly, however, at smallest
separations when r 2 2a ø a the semiclassical estimate
is only about 30% lower than the exact result. For 2k�r 2

2a� . 1 the semiclassical expression (13) is very close to
the exact numerical result obtained using the KKR ma-
trix, if the spheres are large �ka . 1�; see Fig. 1. When
ka ¿ 1 a large number of partial waves contribute, which
renders thus the semiclassical limit valid. One can show,
using arguments along the lines in Ref. [16], that the con-
tribution arising from creeping orbits is exponentially sup-
pressed, which is intuitively expected. The contributions
arising from repetitions of the primitive periodic orbit are
relatively small, because the long orbits and the repetitions
of a primitive orbit are less stable in 3D than in 2D. For
this reason, the simplest semiclassical approximation for
the density of states, and consequently for the Casimir
energy, is more accurate for spheres than for cylinders.

Our findings suggest that for more complicated geome-
tries, if the curvature radii are larger than the wave length,
120404-2
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FIG. 1. The correction to the number of states NC�´� as a
function of r 2 2a in the upper part and as a function of k
in the lower part for n � 1.

one can safely evaluate the density of states using the con-
tributions arising from short primitive periodic orbits only,
without any repetitions. If the curvature radii are smaller
than the wavelength, then the alternative simple approxi-
mation of small scatterers could be used. Using Eq. (13)
one can now easily derive an approximate, but rather ac-
curate, expression for the Casimir energy for two large
spheres �kFa . 1�

EC � 2nm
a2

2pr�r 2 2a�
j1�2kF �r 2 2a�� , (14)

where j1�x� is the spherical Bessel function.
Under the same approximations the Casimir energy of a

large sphere at a distance r from an infinite plane reads

EC � 2nm
a

2p�r 2 a�
j1�2kF�r 2 a�� . (15)

One can naturally expect that if a standing wave with the
Fermi momentum could be formed in between the two
spheres, then the total energy of the system is at a (local)
120404-3
minimum, which thus explains the oscillatory character of
this interaction.

Let us consider now the case of three and four spheres.
The semiclassical picture makes particularly transparent
the reason why, strictly speaking, the Casimir energy can-
not be represented as a sum of pairwise interactions. Each
primitive periodic orbit and its repetitions give rise to an
additive contribution to the density of states, see Eq. (12),
and thus to the Casimir energy (5). For three or more
objects there are periodic trajectories (or standing waves)
bouncing off three or more such objects and thus the con-
tribution to the density of states and to the Casimir energy
due to such orbits depends on the relative arrangement of
three or more objects, thus leading to genuine three and
more body interactions. We determined, however, that the
contribution of three or more bounce orbits to the den-
sity of states, and thus to the Casimir energy as well, is
never dominant. (Our analysis and conclusions refer to
the global domain of the system always and not to the
fundamental domain or to the one-dimensional representa-
tions of a symmetry reduced problem.) An analysis of the
stability matrix of an n-bounce orbit shows that its contri-
bution to the integrated density of states at large distances
is proportional to 1�Ln, where L is the length of the or-
bit, if all the legs of the orbit are comparable in length;
see Fig. 2. Any person who ever played pool (thus in
2D) knows instinctively that long shots are more difficult
than short ones and that the most difficult shots are the
many-bounce shots. In 3D and higher dimensions orbits
are typically more unstable than in 2D. An exact evalua-
tion of the stability matrix for various periodic trajectories
shows that even at small separations the contributions of
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FIG. 2. The relative amplitude of the contribution to the semi-
classical density of states (12) of n-bounce periodic orbits for
the system of three identical spheres, situated at the vertices of
an equilateral triangle, as a function of the distance between
two spheres r�a�r $ 2a� as compared to the amplitude of the
2-bounce orbit, including the corresponding degeneracies. In the
legend 123 denotes an orbit starting at the sphere 1, followed
by a bounce off the sphere 2, then off the sphere 3, and ending
on sphere 1, and so forth.
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FIG. 3. The ratio of the exact Casimir energy and chemical
potential EC�m for four spheres and computed as a sum of the
exact contributions due to pairs or triplets of spheres for two
different separations.

2-bounce periodic orbits dominate over those of three or
more bounce periodic orbits. The 3-bounce orbit gives the
largest contribution, an approximately 10% corrections, at
r � 2.5a. As one can also judge from Figs. 3 the role of
the orbits bouncing among three or more objects is never
too large. The Casimir energy for three identical spheres
(at the vertices of an equilateral triangle) satisfies the ap-
proximate relation E3 � 3E2 and correspondingly in the
case of four identical spheres (at the vertices of a tetra-
hedron) one has E4 � 6E2 � 2E3, where EN stands for
the Casimir energy of N spheres, with high accuracy if
kFa ¿ 1. For kFa # 1 corrections could reach 10% for
three and 25% for four spheres.

We presented here results only for the symmetric ar-
rangement of the spheres due to the lack of space. Vari-
ous asymmetrical configurations of three and four spheres
show the same general pattern, namely that the correction
to the integrated density of states NC�´� can be repre-
sented fairly accurately as a sum of the corresponding cor-
120404-4
rections for pairs of spheres. Obviously, one can replace
the spheres with other objects, with curvature radii larger
than the Fermi wave length. The pairwise additivity of
the Casimir interaction is reasonably well satisfied as well
for the case of point scatterers, as one can easily check
using Eq. (9). We thus conclude that genuine many-body
Casimir interactions are relatively short ranged and that
two-body interactions strongly dominate —even for small
separations.
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