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The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift
the critical temperature by an amount DTc � cascn1�3T0 from the ideal gas result T0, where asc is the
scattering length, n is the density, and c is a pure number. There have been several different theoretical
estimates for c. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation
of O(2) f4 field theory in three dimensions —an effective theory which, as observed previously in
the literature, can be systematically matched to the dilute Bose gas problem to reproduce nonuniversal
quantities such as the critical temperature. We find c � 1.32 6 0.02.
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The phase transition temperature T0 of an ideal three-
dimensional Bose-Einstein gas at fixed density is some-
thing that every physicist learns to calculate in graduate
school, if not before. It is amusing that the first correction
to that result, from arbitrarily weak interactions, is suffi-
ciently challenging that there has not yet been theoretical
agreement on its magnitude. It is understood that, in the
weak interaction limit, the correction DTc � Tc 2 T0 be-
haves parametrically as

DTc

T0
! cascn

1�3, (1)

where c is a numerical coefficient. (A clean argument may
be found in Ref. [1].) Here asc is the scattering length,
and the weak interaction (or dilute) limit is ascn1�3 ø 1:
that is, asc is small compared to the typical separation
between particles. (We will assume that the interaction
is repulsive.) However, there has been little agreement in
estimates of the coefficient c, a variety of which [1–9] are
shown in Fig. 1. Some of these estimates are advertised as
rough, but others are not. The difficulty arises because the
phase transition is second order, and perturbation theory
typically breaks down at second-order phase transitions:
the physics that determines DTc is nonperturbative. As
we shall briefly review, the problem of finding DTc in the
weak interaction limit can be related to solving static three-
dimensional O(2) scalar f4 field theory [1]. In this paper,
we present results from using standard, numerical, lattice
Monte Carlo methods to solve that theory. In principle, this
provides an exact method for computing c to any desired
precision; in practice, one is limited by computer time
and memory. Working on desktop computers, we find
c � 1.32 6 0.02, which is the gray bar in Fig. 1.

It is long distance physics that determines DTc in the
weak interaction limit. It is well known [10] that, at dis-
tance scales large compared to the scattering length asc, an
appropriate effective theory for a dilute Bose gas is the
second-quantized Schrödinger equation, together with a
0031-9007�01�87(12)�120401(4)$15.00
chemical potential m that couples to particle number den-
sity c�c, and a jcj4 contact interaction that reproduces
low-energy scattering. The corresponding Lagrangian is

L � c�

µ
ih̄≠t 1

h̄2

2m
=2 1 m

∂
c 2

2p h̄2asc

m
�c�c�2.

(2)

Corrections to this effective theory (due, for instance,
to energy dependence of the cross-section or three-body
interactions) may be ignored for the purpose of computing
the leading-order result for DTc. To study (2) at finite
temperature, apply the imaginary time formalism, so
that t becomes it and imaginary time t is periodic with
period h̄b � h̄�kBT . The field c can then be decom-
posed into frequency modes with Matsubara frequencies
vn � 2pn�h̄b. For distances large compared to the
thermal wavelength l � h̄

p
2pb�m, and sufficiently near

the transition so that jmj ø T , the nonzero Matsubara
frequencies decouple from the dynamics, leaving behind
an effective theory of only the zero-frequency modes c0,
with the action S � h̄21

R h̄b
0 dt

R
d3xL becoming [1]
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FIG. 1. Estimates from the literature of the constant c in
DTc�T0 ! can1�3. The gray bar is the result of this paper.
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b
Z

d3x

∑
c�

0

µ
2

h̄2

2m
=2 2 meff

∂
c0 1

2p h̄2asc

m
�c�

0 c0�2

∏
,

(3)

up to corrections that again do not affect the leading-order
result for DTc. This action can be thought of as the bH
of a classical three-dimensional field theory. Finally, it is
convenient to rewrite c0 � �f1 1 if2�

p
2p�l so that the

effective action becomes a conventionally normalized O(2)
field theory:

S �
Z

d3x

∑
1
2
j=fj2 1

1
2

refff
2 1

u

4!
�f2�2

∏
, (4)

where f is understood to be a 2-component real vector
�f1, f2� and u � 96p2asc�l2.

As noted by Baym et al. [1], it is technically somewhat
more convenient, in this formalism, to calculate the shift
Dnc�T � in the critical density at fixed temperature instead
of the shift DTc�n� in the critical temperature at fixed den-
sity. The two are trivially related at first order in DTc by
DTc�T � 2

2
3Dnc�n, where the factor of 2

3 arises from
the ideal gas relation T0 ~ n2�3. In the field theory, n is
given by �c�c�, which is proportional to �f2�. Putting
everything together [1],

DTc

T0
� 2

2mkBT0

3h̄2n
D�f2�c , (5)

where

D�f2�c � ��f2�c	u 2 ��f2�c	0 (6)

is the difference between the effective theory value of �f2�,
at the critical point, for the cases of (i) u small and (ii) the
ideal gas u � 0. Unlike �f2�c, the difference D�f2�c is an
infrared quantity, independent of how the effective theory
(4) is regularized in the ultraviolet (UV).

Finding ��f2�c	u in the effective theory (4) corresponds
to fixing u, varying r to reach the critical point, and then
measuring �f2�. The only parameter of this problem
is u. By dimensional analysis, physics is therefore
nonperturbative at the infrared length scale 1�u, and,
again by dimensional analysis, D�f2�c is proportional
to u. Putting this together with the ideal gas formula
T0 � �2ph̄2�kBm� �n�z � 3

2 �	2�3, one may summarize the
relationship between the weak interaction limit for DTc

and the O(2) effective theory as DTc�T0 ! cascn1�3 with

c � 2
128p3h
z

≥
3
2

¥i4�3

D�f2�c

u
. (7)

To compute D�f2�c�u, we put the O(2) theory (4) on a
lattice. For example, the most straightforward discretiza-
tion would use the action
120401-2
SU � a3
lat

X
�xy�

1
2

∑µ
f1x 2 f1y

alat

∂2

1

µ
f2x 2 f2y

alat

∂2∏

1 a3
lat

X
x

∑
rlat

2
�f2

1x 1 f2
2x� 1

u

4!
�f2

1x 1 f2
2x�2

∏
,

(8)

on a simple cubic lattice, where �xy� represents all nearest-
neighbor pairs and alat is the lattice spacing (unrelated to
asc). The dimensionless coupling of the lattice theory is
ualat, and the continuum limit is ualat ! 0.

Our simulations use an improved action to reduce lattice
spacing errors. [The subscript U on S in Eq. (8) stands
for “unimproved.”] Details concerning the action and our
simulations are given in Ref. [11]. Our simulations use
a combination of heat bath and multigrid updates [12].
At finite volume, we use the method of Binder cumulants
[11,13] to determine a nominal critical value for r.

Because three-dimensional scalar theory requires UV
regularization of its f2 interactions, the rlat in the lat-
tice action (8) is not simply the reff in the effective the-
ory action (4), which in turn is not simply related to the
chemical potential m in the original action (2). However,
for our purposes here, we are only interested in adjusting
rlat to find the critical point, for a given u, and measuring
D�f2� there. The actual relation between rlat, reff, and m

[14] is unnecessary. The f4 interactions, in contrast, do
not require UV regularization: in the limit ualat ! 0, the
coupling u of the lattice theory may be identified with the
continuum coupling u � 96p2asc�l2 introduced earlier.

For a given u, we compute �f2�c by Monte Carlo nu-
merical simulations of the lattice theory. The u � 0 piece
of the difference D�f2�c can be easily computed without
simulations:

D�f2�c � lim
alat!0

"
�f2�lat 2

Z
p[BZ

Gii
lat�p�

#
, (9)

where G
ij
lat�p� is the free lattice propagator, and the mo-

mentum p is integrated over the Brillouin zone (BZ). Such
integrals are reviewed in Ref. [11]. For the unimproved
lattice theory (8), for example [16],

D�f2�c � lim
alat!0

∑
�f2�lat 2

SU

2palat

∏
, (10)

where SU � 3.175 911 535 625 . . . .
There are two limits that must be taken of lattice Monte

Carlo data: the continuum limit ualat ! 0 and the infinite
volume limit Lu ! `. Figure 2 shows the dependence
of our data on system size �Lu� at ualat � 6. Figure 3
shows the dependence on lattice spacing �ualat� at Lu �
576. From these two figures, it is reasonably clear that our
raw data includes reasonably large volumes and reasonably
small lattice spacings. We will discuss extrapolations of
the infinite-volume continuum limit using finite volume
scaling, the known critical exponents of this model, and
an analysis of finite lattice-spacing errors.
120401-2



VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001
0 500 1000 1500
Lu

−0.002

−0.001

0

0.001

0.002
∆<

φ2 >/
u

large Lu fit: A+B(Lu)
−1.5

small Lu expansion (NLO)

ualat=6

FIG. 2. O�ualat�-corrected results for D�f2�c vs system size
at ualat � 6. A numerical fit to large L scaling behavior is
shown, which fits the last 4 points with confidence level 61%.
Also shown, for comparison, is a small Lu expansion [11] of
the exact continuum result in finite volume (at next-to-leading
order in Lu).

First, however, we wish to show that one can obtain
a quick estimate from the raw data without relying on
anything fancy. Table I shows values associated with a
selected subset of the largest Lu and smallest ualat data
points from the figures. We take the �Lu, ualat� � �576, 6�
result as a starting point for our estimate. The finite-
volume correction is at least as big as the difference with
the value at (1152, 6) [which corresponds to doubling Lu]
but is unlikely to be double this difference. This difference
is roughly 20.000 15 (ignoring the small statistical errors),
so we might estimate the finite-volume correction to the
Lu � 576 value to be somewhere between 20.000 15 and

0 2 4 6 8 10 12
ualat

−0.0012

−0.0011

−0.001

−0.0009

∆<
φ

>/
u

O(alat) result
quadratic fit (4 points)

FIG. 3. Results for D�f2�c vs ualat at Lu � 576 that incorpo-
rate perturbatively calculated O�ualat� corrections. The line is a
fit of A 1 B�ualat�2 to all but the rightmost data point and has
confidence level 14%.
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TABLE I. Selected data for D�f2�c�u.

�Lu, ualat� D�f2�c�u

(576, 6) 20.001 047�8�
(576, 3) 20.000 992�11�

(1152, 6) 20.001 200�9�

20.000 30. From a similar comparison of the (576, 6) and
(576, 3) data, we might estimate the finite lattice spacing
correction to (576,6) to be between roughly 10.000 05
and 10.000 11. Adding our corrections and the original
(576, 6) data point, the final rough estimate of the contin-
uum infinite-volume value would be

D�f2�c
u

� 20.001 19 6 0.000 11 , (11)

which, by (7) would translate to c � 1.31 6 0.12.
We now summarize a more careful analysis of correc-

tions, detailed in Ref. [11]. Our strategy is to start again
with Lu � 576 data, extrapolate the continuum limit, and
estimate the finite volume correction. To improve the ap-
proach to the continuum limit, we have analytically calcu-
lated the O�ualat� corrections to D�f2�c and the relation
between lattice and continuum values of u, using lattice
perturbation theory [11]. Figure 4 shows Lu � 144 data
which clearly demonstrates our control of lattice spacing
errors. The uncorrected data clearly have a linear depen-
dence on ualat. But the corrected data fit, to high confi-
dence level, the assertion that the remaining error scales
as �ualat�2. Based on a similar fit to the data of Fig. 3, we
estimate the ualat ! 0 result at Lu � 576 as∑

D�f2�c

u

∏
Lu�576

� 20.000 957 6 0.000 015 . (12)
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FIG. 4. The squares show D�f2�c vs ualat at Lu � 144 in-
corporating O�ualat� corrections. The line through them is a fit
of the first 6 points to A 1 B�ualat�2 and has confidence level
94%. The diamonds represent the corresponding uncorrected
data, with a straight line fit to the first 3 points to guide the eye.
120401-3



VOLUME 87, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 17 SEPTEMBER 2001
Finite scaling arguments predict that the large Lu cor-
rections to D�f2�c should scale as [11]

D�f2�c 
 A 1 BL2�12a��n (13)

if the method of Binder cumulants is used to determine
the transition point in finite volume. Here a � 20.01 and
n � �2 2 a��3 � 0.67 are the specific heat and correla-
tion length critical exponents of the O(2) model [17]. Fur-
ther discussions of fits, and an analysis of corrections to
scaling, may be found in Ref. [11]. On the basis of these
fits, we estimate the finite size correction at Lu � 576 to
be 0.000 241 6 0.000 007. Putting this together with the
Lu � 576 continuum extrapolation (12), we obtain the fi-
nal infinite-volume continuum result

D�f2�c

u
� 20.001 198 6 0.000 017 . (14)

Using Eq. (7) for the weak-interaction limit of DTc, the
result for D�f2�c translates to

DTc

T0
! �1.32 6 0.02�ascn1�3. (15)

It is interesting to compare our numerical results with
results from the large N expansion, depicted by triangles
in Fig. 1. In large N , one generalizes the O(2) effective
field theory to an O�N� theory of N real fields, calculates
results in powers of 1�N , and hopes the expansion will be
useful for the case of interest, N � 2. The leading-order
(LO) result c � 2.33 [7] is off by 77%, but the next-to-
leading-order (NLO) result c � 1.71 [5] moves in the right
direction and is off by only 30%. This is surprisingly good
for an expansion that treats N � 2 as large.

We should comment on the discrepancy of our results
with previous numerical calculations in the literature [3,6],
shown in Fig. 1, which used a radically different start-
ing point. Rather than using field theory methods and the
grand canonical ensemble, they start with the path integral
for a large, fixed number of particles in a box. The re-
cent work of Holzmann and Krauth [6], however, makes a
flawed assumption at the very beginning: they assume that
the integrand of the path integral can be expanded pertur-
batively in the interaction, and keep only the leading term.
This is wrong because interactions cannot, generically, be
treated perturbatively at a second-order phase transition.

We believe one likely problem with the older simula-
tions of Grüter et al. is inadequate system size [11]. Reppy
et al. [18] have reported c � 5.1 6 0.9 from experimental
120401-4
data on He-Vycor systems, but cautions about the data’s
interpretation may be found in Ref. [5].

As we completed this work, another paper appeared [19]
which uses techniques very similar to ours and obtains the
statistically compatible result c � 1.29 6 0.05.
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