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The dispersion cancellation feature of pulses which are entangled in frequency is employed to syn-
chronize clocks of distant parties. The proposed protocol is insensitive to the pulse distortion caused by
transit through a dispersive medium. Since there is cancellation to all orders, also the effects of slowly
fluctuating dispersive media are compensated. The experimental setup can be realized with currently
available technology, at least for a proof of principle.
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If two distant persons want to synchronize their clocks,
one of them (say Alice) sends a pulse, which is bounced
back by the other (Bob). Alice measures the pulse creation
and travel time and Bob the time at which the bounce
occurs. By exchanging their measurement results, each of
them may know the time of the other relative to his own
clock. This is the idea underlying the Einstein synchro-
nization scheme [1]. Of course, if the medium between
Alice and Bob is dispersive, then the pulses they exchange
get distorted and the measurements of the bounce time at
Bob’s side and of the arrival time at Alice’s side acquire an
error, which must be summed to the intrinsic error in such
kind of measurements. In the actual technological prob-
lem of synchronizing clocks of distant parties [2], it seems
that the main cause of errors is given by the (possibly fluc-
tuating) dispersion effects of the medium through which
the pulses travel. Franson [3] proposed a scheme capable
of suppressing the dispersion effects to all orders, given a
suitably tailored dispersive media. Steinberg, Kwiat, and
Chiao [4,5] proposed and experimentally implemented a
scheme capable of suppressing to first order the effects of
dispersion of arbitrary media. In their scheme the time-
resolved coherence properties of frequency-entangled
pulses to first order do not acquire any spread when trav-
eling through a dispersive medium. However, their
scheme is not suitable for clock synchronization since
the dispersion cancellation is present only if the time
of arrival is not determined accurately [5,6] and since
only the interferometer arms path length difference is
recovered.

Here a modified version of the Steinberg, Kwiat, and
Chiao interferometer is presented, which allows the syn-
chronization of the clocks of Alice and Bob without be-
ing bothered by the pulse distortion as it travels through
the intervening medium. This scheme is an application
of the proposal [7] to employ frequency-entangled pulses
to achieve an accuracy increase in clock synchronization.
The synchronization protocol employed is quite differ-
ent from the Einstein clock synchronization scheme: no
time measurements are needed, and the relative distance
or the transit time between Alice and Bob or any disper-
sive property of the medium play no role in the protocol.
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As in the Einstein protocol, the only (rather reasonable)
hypothesis is that the pulse time of travel is the same both
ways. This allows one to also employ the scheme in the
presence of fluctuations in the medium under the require-
ment that the fluctuations have a time scale longer than the
pulse travel time.

The setup is realizable with currently available technol-
ogy, since it employs conventional parametric down con-
verter crystals as frequency-entanglement source.

In Sect. I of this paper the time synchronization protocol
that the proposed scheme employs is described. In Sect. II
the experimental setup and its features are presented. In
Sect. III the equations of motion of the system are solved
and the hypotheses needed to have dispersion cancellation
are given.

I. Clock synchronization protocol.— In this section, the
protocol underlying the proposed experimental setup is de-
scribed and compared to the Einstein clock synchroniza-
tion. It is a classical protocol [8]: the quantum mechanical
features of the setup that will be introduced in the following
sections are employed only to achieve enhanced accuracy
and dispersion cancellation.

Consider the following scenario for the sake of illustrat-
ing the method: a conveyor belt (i.e., a physical system in
which the transit time from A to B is the same as from B
to A) connects Alice and Bob (as in Fig. 1). Alice pours a
quantity of sand which is proportional to the time shown on
her clock on both sides A and A0 of the conveyor belt, i.e.,
on the side traveling towards Bob and on the side traveling
towards the point M. Bob, at one end of the conveyor belt
(point B), scoops away a quantity of sand proportional to
twice the time shown on his clock. If the proportionality
constant of Alice and Bob are the same, then the quantity
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FIG. 1. Schematic of the “conveyor belt synchronization”
scheme.
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of sand at point M will be constant in time, after an initial
transient when they start to act on the system. Thus, it is
sufficient to measure such a quantity in order to recover
the exact time difference between Alice’s clock and Bob’s
clock. The precision with which this time difference may
be recovered depends only on the precision with which it
is possible to measure the quantity of sand at M.

The main advantage of this scheme over the Einstein
clock synchronization procedure is that no time of arrival
measurements need to be performed. In fact, the time of
arrival measurement of a pulse has an intrinsic unavoidable
error dependent on its bandwidth. The conveyor belt syn-
chronization strikingly allows time synchronization with-
out any timing measurements. On the other hand, while
Einstein’s protocol measures the distance between Alice
and Bob (if the pulse speed is known), this procedure does
not allow the recovery of any information on this distance,
unless Bob stops scooping the sand away.

A practical realization of this classical scheme is read-
ily implemented. An intense continuous polarized beam
which travels from Alice to Bob and back is employed as
conveyor belt. Alice, on her side, rotates at positions A
and A0 the beam polarization by an amount proportional
to the time shown on her clock. Bob rotates the polariza-
tion at position B by an amount proportional to twice his
time, but with opposite direction. The shift in polarization
measured at position M allows Alice and Bob to determine
the difference in the time of their clocks up to a rotation
period. In the next section, a scheme is introduced that
exploits quantum properties to enhance the accuracy and
cancel the effects of dispersion.

II. Experimental setup.— In this section, an experi-
mental scheme and procedure to implement the protocol
described in the previous section is described. The
experimental setup is sketched in Fig. 2. It is based on the
Hong, Ou, and Mandel (HOM) interferometer [9], which
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FIG. 2. Sketch of the experimental setup for the all-orders dis-
persion cancellation synchronization. Alice on the left and Bob
on the right are separated by a dispersive medium. The fre-
quency entangled state is produced by a parametric down con-
verter crystal (PDC) and is made to interfere at the 50-50 beam
splitter (BS). The coincidence rate Pc is measured as a function
of the position of the beam splitter dl. Alice and Bob introduce
timing information in the setup through the time varying delays
dlI

a , dlI
b, dlS

a , and dlS
b . Notice that two delays (dlI

a and dlS
b )

increase in time, while the other two (dlS
a and dlI

b) decrease.
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uses the frequency-entangled output beam generated by
a parametric down converter crystal. After propagating
through different optical paths, the signal �S� and idler
�I� beams are interfered at a beam splitter. By measuring
the photon coincidence rate Pc at the output ports 1 and
2 of the beam splitter, one may acquire very precise
information on the path length difference in the two
arms. The precision limit is given by the inverse of the
bandwidth of the down-converted state (twin beams) and
is, to a large extent, independent of the precision of the
photon time of arrival measurement. Steinberg, Kwiat,
and Chiao [4,5] showed that in the presence of dispersive
media in the interferometer, it is possible to cancel the
effects of such dispersion using detectors with a wide
integration window. Here this idea is pursued further.
By using the scheme proposed here, Alice and Bob may
check whether their clocks are synchronized, and may
keep them synchronized through a feedback loop under
the hypothesis that the drift of their clocks is sufficiently
slow.

As shown in Fig. 2, Alice operates the parametric down
converter and generates the twin beams she sends through
the interferometer. The beams travel up to Bob’s position
and are reflected back to Alice. She makes them interfere at
a 50-50 beam splitter and measures the coincidence rate of
the photodetector clicks at the outputs of the beam splitter,
as a function of the optical path length difference dl. She
obtains a flat coincidence rate with a very narrow dip for
dl � 0 (as in Fig. 3).

As will be shown in Sect. III, in order to check whether
their clocks are synchronized, Alice and Bob must intro-
duce time varying delays dlS

a �t�, dlI
a�t�, dlS

b �t�, and dlI
b�t�

both on the idler I and signal S beam. (As examples of
varying delays consider moving mirrors or time varying

FIG. 3. Plot of Pc vs dl. The dashed line refers to the case
y � 0, and the continuous line to the case y � 50 m

s . In this
graph, the Gaussian spectrum of the down-converted beams has
a bandwidth Dv � 1015 s21 and t � 1 ns.
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phase shifters.) These delays play the role of adding or
subtracting the sand from the conveyor belt. In order to
have dispersion cancellation, four delays are needed in-
stead of only the two that are sufficient for the synchro-
nization. The protocol requires these delays to be linked
to the time measured by Alice’s clock and Bob’s clock, re-
spectively. Consider, for example, the case of linear time
dependence, i.e.,

dlI
a�t� � y�t 2 ta

0 �, dlI
b �t� � 2y�t 2 tb

0 � ,

dlS
a �t� � 2y�t 2 ta

0 �, dlS
b �t� � y�t 2 tb

0 � ,
(1)

where ta
0 and tb

0 are the times at which Alice and Bob start
their clocks and y is the delay rate (e.g., the speed of the
moving mirrors). As shown in Fig. 2, Alice places one of
her delays at the beginning and the other one at the end
of the transmission line. Bob applies both his delays in
the middle of the two paths. We might assume that Alice
and Bob have identical clocks and only want to find out
the time difference t � tb

0 2 ta
0 between them. Because

of the introduction of the delays (1), the final path length
difference as measured by the HOM interferometer will be
affected by a factor dependent on t and Alice can measure
it by observing the shift of the dip position in the photon
coincidence rate Pc as shown in Fig. 3.

III. Analysis of the experiment.— In this section the
main result is derived. It will be shown that the dip
in the coincidence rate graph is located at the position
dl0 � 4yt, which shows that by measuring the Mandel
dip position [9], one can recover the time difference
between Alice’s clock and Bob’s clock. There is no
dependence on the distance between Alice and Bob or
on any property of the intervening medium. The only
two hypotheses that are required are (a) the travel time
of the twin beam state from Alice to Bob is the same as
from Bob to Alice (which gives a lower time limit for
the fluctuations of the intervening medium) and (b) the
medium acts in the same way on the beams traveling in
both directions (which gives a lower limit for the spatial
inhomogeneities of the medium: the distance between the
117902-3
beams traveling in the two directions must be smaller than
the inhomogeneity characteristic length).

The twin beam state at time t � 0 at the output of the
crystal (cw pumped at frequency 2v0) is given by the
frequency maximally entangled state

jc� �
Z

dv f�v�jv0 1 v�I jv0 2 v�S , (2)

where jv�S and jv�I denote the signal and idler “frequency
states” (i.e., state in which there is only one photon at fre-
quency v and the vacuum for all the other frequencies),
and f�v� is the spectral function of the down-converted
light, centered in v � 0 and characterized by the band-
width Dv. The coincidence rate at the photodetectors is
given by the Mandel formula for photodetection [10]

Pc ~
Z

T
dt1 dt2 �cjE

�2�
1 E

�2�
2 E

�1�
2 E

�1�
1 jc� , (3)

where T is the integration time window of the detectors. In
Eq. (3) the electromagnetic fields at time tj at the output
of the beam splitter, assuming for the sake of simplicity a
linear polarization, are given by8<

: E
�1�
j � i

R
dv

q
h̄v

4pcA aj�v�e2iv�tj2xj�c�

E
�2�
j � �E�1�

j �y for j � 1, 2,
(4)

where A is the beam cross section and xj is the position of
the detector. It is possible to match the output fields of the
beam splitter with the fields before the moving mirrors by
applying the beam splitter transformation on the mirrors’
reflected fields. This latter may be obtained by perform-
ing some Lorentz transformations on the input fields: first
from the source to the moving-mirror frame and then back
to the laboratory frame. This procedure yields the transfor-
mations for the field annihilation operators when the fields
are bounced off the moving mirrors. Analyze the idler
beam first. One finds that the annihilation operator aI�v�
at the crystal position is evolved into a0

I �v� at Bob’s po-
sition (at a distance L from the crystal) and into a00

I �v� at
the beam splitter position (at a distance L0 from Bob), with
a0
I �v� �

p
x aI�xv�e2iv�2b�ta

0 2x0�c���12b�2L�c�1ikI
t �v�,

a00
I �v� � aI�v�e2iv�2b�ta

02tb
0 2x0�c���11b�2�L�x1L0��c�1ikI

t �v�x�1ikI
f�v�, (5)

where b �
y

c , x �
11b

12b is associated with the Doppler shift introduced by the moving mirrors, and x0 is the distance
of Alice’s delay from the crystal. In Eq. (5) the terms kI

t and k
I
f take into account the effect of the dispersive medium

on the idler beam on their way to and from Bob, respectively. Notice that because of the Doppler shift introduced by
the first mirror (which, for b . 0, reduces the frequency of the beam after the mirror), kI

t is evaluated at v�x. On the
other hand, because of the compensation due to the second mirror, k

I
f is evaluated at frequency v. Analogous procedure

applies to the signal beam, resulting in the operator transformations

a0
S�v� �

p
x aS�xv�e2iv�2b�tb

0 2L�c���12b�2L�c�1ikS
t �xv�,

a00
S�v� � aS�v�eiv�2b�ta

02tb
0 1x0�c���11b�1�L�x1L0��c�1ikS

t �v�1ikS
f �v�x�, (6)
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where here a0
S has been evaluated after the delay dlS

b .
As shown in Fig. 2, the modes which are detected at the

output of the beam splitter are obtained as8<
: a1�v1� �

1
p

2
�ia00

I �v1�e2iv1dl�c 1 a00
S�v1�� ,

a2�v2� �
1
p

2
�ia00

S �v2� 1 a00
I �v2�e2iv2dl�c� ,

(7)

where dl is the delay that Alice introduces in order to
scan the path length dependence of Pc. Replacing Eqs. (2)
and (7) into (3), and taking the limit T ! `, which cor-
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responds to wide time window at the detection [5,6], one
obtains (recalling that the state jc� contains only two pho-
tons)

Pc ~
Z

dv1 dv2 j�0ja1�v1�a2�v2�jc�j2, (8)

where the usual limit Dv ø 2v0 was employed to sim-
plify the frequency dependence of the field (4). Assuming
the symmetry f�v� � f�2v� of the spectral function,
the matrix element in (8) is given by
�0ja1�v1�a2�v2�jc� �
1
2 d�v1 1 v2 2 2v0�eiwf�v1 2 v0� �1 2 e2i�v12v0� �4b�tb

0 2ta
0 ���11b�2dl�c�2iDk�v1�� , (9)
where w is an overall phase term that will disappear taking
the modulus, and

Dk�v� � kS
t �v� 2 kI

f�v� 1 kI
f �2v0 2 v�

2 kS
t �2v0 2 v� 1 kI

t

µ
2v0 2 v

x

∂

2 kS
f

µ
2v0 2 v

x

∂
1 kS

f

µ
v

x

∂
2 kI

t

µ
v

x

∂
(10)

is the contribution of the dispersion terms. It is immediate
to see that Dk vanishes altogether at all orders by requiring
that kS

t � k
I
f and k

S
f � kI

t , which can be satisfied by
allowing the from idler beam to propagate at a distance
less than the spatial inhomogeneities of the medium from
the to signal beam and, equivalently, by allowing the to
idler beam to propagate near the from signal beam. In this
case any effect of the medium will be erased. Replacing
Eq. (9) into (8), one obtains

Pc �
Z

dv jf�v�j2
∑

1 2 cos

µ
2

v

c
�dl0 2 dl�

∂∏
,

(11)

where dl0 � 4yt��1 1 b� or dl0 � 4yt in the nonrela-
tivistic regime. Finally, in the simple case of a Gaussian
spectrum jf�v�j2 with variance Dv2, Eq. (11) becomes

Pc � 1 2 e22Dv2�dl2dl0�2�c2

, (12)

which, as shown in Fig. 3, features a dip of width 1��4Dv�
centered in dl � dl0. By measuring the dip position, one
can recover the time difference t between Alice’s clock
and Bob’s clock.

Notice that, if the parameter y is known with an accu-
racy Dy, then, in the nonrelativistic regime, the error in
the determination of t is given by

Dt �

s
1

�4Dvb�2 1

µ
Dy

y

∂2

t2 , (13)
where the first term refers to the intrinsic accuracy in the
dip position measurement. Suppose, for example, that
the clocks are initially synchronized up to t � 1 ns and
the twin beam bandwidth is Dv � 1015 Hz (as in [4]),
then to achieve an accuracy Dt 	 1021 ns one has to use
y 	 500 m�s with Dy & 50 m�s.

In conclusion, the proposed protocol allows Bob to mea-
sure the time difference t between his clock and Alice’s
clock, without being affected by the dispersion of the in-
termediate medium. The accuracy of the scheme is depen-
dent only on the bandwidth Dv of the twin beam and on
the delay rate y; namely he can recover t with an error
	1��Dvy�c�.
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