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The Berry phase due to the spin wave function gives rise to the orbital ferromagnetism and anomalous
Hall effect in the noncoplanar antiferromagnetic ordered state on face-centered-cubic (fcc) lattice once
the crystal is distorted perpendicular to the �1, 1, 1� or �1, 1, 0� plane. The relevance to the real systems
g-FeMn and NiS2 is also discussed.
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It has been recognized for a long term that the chirality
plays important roles in the physics of frustrated spin sys-
tems [1–6]. These degrees of freedom are distinct from the
(staggered) magnetization, and could show phase transition
without magnetic ordering [1–3]. Especially since the dis-
covery of the high-Tc cuprates, the scalar spin chirality

xijk � �Si ? � �Sj 3 �Sk� (1)

has been a key theoretical concept in the physics of
strongly correlated electronic systems [4–6]. This spin
chirality acts as the gauge flux for the charge carriers
moving in the background of the fluctuating spins. In
order for the spin chirality xijk to be ordered, both the
time-reversal (T) and parity (P) symmetries must be bro-
ken. Broken T and P symmetries in 2D bring about many
intriguing physics such as parity anomaly [7,8], anyon
superconductivity [9], and quantized Hall effect without
external magnetic field [10]. A physical realization of
the last one has been discussed [11] in the context of
anomalous Hall effect (AHE) in ferromagnets via the spin
chirality mechanism [12–15].

In this paper we explore the chiral spin state in the
ordered antiferromagnet (AF) on the three-dimensional
face-centered-cubic (fcc) lattice. The AF on the fcc lattice
is a typical frustrated system, and nontrivial spin structure
with the finite spin chirality in Eq. (1) is expected. For
example, in the charge transfer (CT) insulator NiS2 [16]
and in the metallic alloy g-FeMn [17] the noncoplanar spin
structure (so-called triple-Q structure shown in Fig. 1a)
has been observed. A theoretical explanation for this
structure is the following. Let us consider the case where
the lattice points are divided into four sublattices as shown
in Fig. 1a. Denoting the (classical) spin moment at each
sublattice as �Sa �a � 1, 2, 3, 4�, the 2-spin exchange inter-
action energy is written as H2 ~ �

P
a�1,4

�Sa�2. Therefore
the condition of the lowest energy

P
a�1,4

�Sa � �0 does not
determine the spin structure and leaves many degenerate
lowest energy configurations. Then the interactions
which lift this degeneracy such as the 4-spin exchange
interaction become important [18,19]. In particular the
phenomenological Ginzburg-Landau theory for the 4-spin
1 0031-9007�01�87(11)�116801(4)$15.00
exchange interaction is given as H4 � J4
P
afib� �Sa ? �Sb�2

[19]. With positive J4, the ground state configuration
is given by �S1 � � 1
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each direction corresponds to the four corners from the
center of a tetrahedron. This noncoplanar spin structure
gives the scalar chirality in Eq. (1) locally. For the itinerant
system g-FeMn, a recent band structure calculation [20]
concluded the stability of the triple-Q spin structure, in
agreement with experiment [17].

Experimentally anomalous behaviors in the fcc AF are
often observed. For example, there occurs mysterious
weak ferromagnetism (WF) in NiS2 below the second AF
transition temperature TN2 [21]. The Hall effect in this
material is also large and strongly temperature dependent
[22]. In Co�SxSe12x�2, the AHE is enhanced in the inter-
mediate x region, where the nontrivial magnetism is real-
ized [23], and CeSb shows the largest Faraday rotation ever
observed [24].

As shown below, the triple-Q AF state (Fig. 1a) on the
distorted fcc lattice gives the orbital ferromagnetism ac-
companied by the AHE and even the realization of the
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FIG. 1. (a) Triple-Q spin structure on fcc lattice. (b) Relation
of the 4-spin moments �Sa (a � 1, 2, 3, 4). (c) Triangle lattice
as a cross section of the fcc lattice perpendicular to the �1, 1, 1�
direction.
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three-dimensional quantum Hall liquid [25] without the ex-
ternal magnetic field.

The Hubbard on-site repulsive interaction U can be de-
composed in terms of the Stratonovich-Hubbard transfor-
mation as

U
2

�w2
i 2 U �wi ? c

y
ia �sabcib , (2)

where �s are the Pauli matrices and �wi is the spin fluctua-
tion field. This field acts as the local effective magnetic
field for the electron, which can be regarded as the c num-
ber in the mean-field approximation for the magnetically
ordered state. The symmetry properties of the ground state
are captured by this approximation, and the quantized Hall
effect discussed below is stable against the fluctuation of
the �w field as long as the gap does not collapse. Therefore
we can consider this system as the free electron model in
the background of the static field U �wi . In particular, when
this field Uj �wi j is much stronger than the transfer integrals
tij ’s, we can map the model into that of spinless fermions
H � 2

P
ij t

eff
ij f

y
i fj with the effective transfer integral

teffij � tij�xi jxj�

� tij

µ
cos

ui

2
cos

uj

2
1 sin

ui

2
sin

ui

2
e2i�fi2fj�

∂
, (3)

where jxi� � �cosui
2 , sin ui

2 e
ifi �t is the spin wave function,

and ui and fi are the polar coordinates of the spin direc-
tion. The phase factor appearing in teffij can be regarded
as the gauge vector potential am� �r�, and the corresponding
gauge flux is related to xijk in Eq. (1) [5,6]. However, it
should be noted here that the effective magnetic flux van-
ishes when averaged over the unit cell because of the pe-
riodicity of the vector potential am� �r� � am��r 1 �Ti� ( �Ti :
primitive vector). Therefore, the net effect of the gauge
flux comes from the fact that there are more than two atoms
and/or orbitals in the unit cell and the resultant multiband
structure. Then each band is characterized by the Chern
number [26]. The Chern number appears as a result of
the spin-orbit interaction and/or the spin chirality in fer-
romagnets [11,27]. In ferromagnets the T-broken sym-
metry is manifest, while in AF the T operation combined
with the translation operation often constitutes the unbro-
ken symmetry. In the latter case, the nonzero Hall con-
ductivity sxy is forbidden. However, when there are more
than two sublattices and the spin structure is noncollinear,
this combined symmetry would be absent and finite sxy is
not forbidden.

In order to facilitate the understanding, first consider the
triangular lattice, which is the �1, 1, 1� cross section of the
fcc lattice (Fig. 1c), and tight binding model with nearest
neighbor hopping given in Eq. (3) has the gauge flux of
p�2 penetrating each triangle. The unit cell is composed
of eight triangles including four atoms. Thus the total
gauge flux penetrating the unit cell is 4p � 0�Mod�2p��,
which is consistent with the periodicity of the lattice. The
116801-2
Chern number can be estimated analytically as 2
e2

h �e
2

h �
for the lower (higher) energy band. Therefore this two-
dimensional spin configuration on the triangular lattice of-
fers an example where the spin chirality orders without the
ferromagnetic spin moment.

When one considers the three-dimensional fcc lattice,
on the other hand, there are three other cross sec-
tions to the equivalent to the �1, 1, 1� direction, namely
�21, 21, 1�, �21, 1, 21�, �1, 21, 21�. Therefore it is
naturally expected that the net spin chirality is zero,
because the spin chiralities are the vector quantities
and the sum of these four vectors is zero. Actually
sxy � syz � szx � 0 for the fcc lattice as shown below.
However, this means that the chirality remains finite when
the symmetry between the four directions is violated. For
example, when the lattice is distorted along the �1, 1, 1�
direction, it is expected that sH � sxy � syz � szx
becomes finite. We express the distortion along the
�1, 1, 1� direction by putting the transfer integral within the
�1, 1, 1� plane as tintra � 1, while that between the planes
as tinter � 1 2 d [28]. As the unit cell is cubic shown in
Fig. 1a , the first Brillouin zone (BZ) is cubic: �2p

a , p

a �3.
From now on, we set a � 1. Then the Hamiltonian matrix
H� �k� for each �k is given by

H��k� �

0
BBBBB@

0 e2i p

6 f2 ei
p

6 f1 f3

ei
p

6 f2 0 e2i p

6 f3 ei
2p

3 f1

e2i p

6 f1 ei
p

6 f3 0 e2i 2p

3 f2

f3 e2i 2p

3 f1 ei
2p

3 f2 0

1
CCCCCA (4)

where f1 � 2�1 2 d� cos� kz2 1
kx
2 � 1 2 cos�2kz

2 1
kx
2 �,

f2 � 2�1 2 d� cos�kx2 1
ky
2 � 1 2 cos�2 kx

2 1
ky
2 �, f3 �

2�1 2 d� cos�ky2 1
kz
2 � 1 2 cos�2 ky

2 1
kz
2 �. In this

Hamiltonian, two bands �´1,2 � 2
p
f1 1 f2 1 f3 � and

upper two bands �´3,4 �
p
f1 1 f2 1 f3 � are completely

degenerate. At d � 0, these two dispersions touch
along the edge of the 1st BZ, i.e., �kx � 6p, ky � 6p,
kz�, �kx ,ky � 6p, kz � 6p�, �kx � 6p, ky , kz � 6p�.
Fixing kz , for example, the �k point �kx � 6p, ky � 6p�
is the center of the massless Dirac fermion (Weyl fermion)
in �2 1 1�D. Therefore the band touching along the
edge can be regarded as an assembly of the �2 1 1�D
Weyl fermions. What happens for finite d differs for
positive and negative values of d. For d . 0 (elongation
along �1, 1, 1� direction), all the Weyl fermions along
the edges open a gap and turn into the massive Dirac
fermions. Therefore the gap opens in the density of
states centered at ´ � 0. For d , 0 (suppression along
�1, 1, 1� direction), on the other hand, all the �2 1 1�D
Weyl fermions along the edges open the gap; two
�3 1 1�D Weyl fermions emerge instead at �kx, ky , kz� �

62 arcsin�
q

422d
424d � �1, 1, 1� � 6D�1, 1, 1� where 6 cor-

respond to right- and left-handed chirality [8]. Here we
consider the mass of the Dirac fermions at the edges of the
BZ. For d . 0, the mass of the �2 1 1�D fermion along
116801-2
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the km axis is positive for every km, while that changes
sign at km � 6D for d , 0.

Based on this observation, the transverse conductivity
can be calculated in terms of the formula in [26]

sxy �
4X
n�1

Z
�2p:p�

dkz
2p

Z
�2p:p�2

dkx dky
2pi

3 f�´n��k�� �=�k 3 �An��k��z

�
e2

h

Z
�2p:p�

dkz
2p

sxy�kz � , (5)

where f�´� is the Fermi distribution function, and �An� �k� �
�n �kj=�kjn

�k� is the vector potential created by the Bloch
wave function jn �k�. Let us consider the m � 0 case,
i.e., quarter filled case. sxy�kz� is the Hall conductance
in the �2 1 1�D system with fixed kz, which is deter-
mined by the parity anomaly caused by the Dirac fermions
along the edge of the BZ. Explicit calculation shows at
T � 0 K, sxy�kz� � 2

e2

h sign� f2�kz� ? d� where f2�kz� �
�4 2 2d� cos�kz2 �2 1 2d ? sin� kz2 �2. For d . 0, sxy�kz� �

2
e2

h for all kz, while sxy�kz � �
e2

h for kz � �2D,D�
and sxy�kz� � 2

e2

h for kz � �2p, 2D� and �D, p� in the
case of negative d , 0. Integrating over kz , we obtain

sxy � 2
e2

h for d . 0 and sxy �
e2

h � 4
p arcsin�

q
422d
424d � 2

1� for d , 0, while sxy vanish for d � 0. One can
easily check that sxy � syz � szx � sH , and that the
sign of sH changes when all the spins �Sa are inverted
( �Sa ! 2 �Sa). One can confirm analytically in Eq. (4) that
the cancellation between the contributions from the two �k
points related by the parity (P) symmetry, e.g., �kx, ky , kz�
and �2kx, ky , kz�, occurs and sxy is zero for the undis-
torted fcc lattice. This remains true even when we modify
�Sa from those given in Fig. 1b. For example, even with fi-
nite magnetization (

P4
a�1

�Sa fi �0), sxy�v� � 0 for any v

on the undistorted fcc lattice. In short, P symmetry is not
broken while T symmetry is broken in the undistorted fcc
lattice, where finite sH is forbidden. A distortion along
the �1, 1, 1� direction does break this P symmetry and pro-
duces finite sH .

Next we turn to the half filled case. When the chemical
potential is in the Mott gap, i.e., Mott insulator, the dc sH
vanishes. However, the optical sH�v� can be finite, which
corresponds to the Faraday and/or the Kerr rotation. In
order to calculate sH�v�, we have to take into account op-
tical transitions between the lower and the upper Hubbard
bands. In the mean-field picture, this corresponds to the
two split bands due to the effective magnetic field U �wi
in Eq. (2). Diagonalizing the tight-binding Hamiltonian
with this local “magnetic field,” we can calculate sH�v�.
sH �v� shown in Fig. 2 is for d � 20.1,Uj �wij � 5.

Now we turn to the orbital ferromagnetism induced by
the distortion. Orbital magnetization M is given by
116801-3
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FIG. 2. sH �v� for d � 20.1,Uj �wi j � 5.

M � lim
B!0

Z eF

2`

≠N�B, m�
≠B

dm . (6)

In terms of the Str̆eda formula [29], i.e., sxyjm � sIxyjm 1

ec
≠N �B,m�

≠B with sIxy jm � i
1

2hTr�ĴxG1�m�Ĵyd�m 2 H� 2

Ĵxd�m 2 H�ĴyG2�m��, we estimate the integrand in
Eq. (6) from sxyjm and sIxyjm. Shown in Fig. 3 is the
orbital magnetization M as a function of the distortion d
for the half filled case. The sign of orbital magnetization
M changes when all the spins are inverted. (Magnetization
depicted in Fig. 3 corresponds to the triple-Q structure in
Figs. 1a, 1b.) Note that M is finite even though the dc
sH � 0 in this case, because the former is determined by
the integral over the occupied states.

In real materials, the configuration with all the spins
being inverted (which means that the chirality is also in-
verted) has the same energy. Thus it is expected that the
domain structure of these two chiralities is formed. In or-
der to align this chiral domain, we must cool down into
AF order phase by applying external strain and external
magnetic field, which couples to the orbital magnetiza-
tion and prefers one of the chiral domain. (For d . 0,
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the magnetic field in �1, 1, 1� direction prefers the triple-Q
structure as in Figs. 1a, 1b.) Last, it is noted here that the
distortion along �1, 1, 0� or other three equivalent directions
produces the similar effect as discussed above, while that
along �1, 0, 0�, etc., does not. This also offers a way to test
this idea experimentally.

Now we discuss the experimental relevance of these re-
sults. One of the most promising materials for this spin
chirality mechanism is the itinerant AF g-FexMn12x al-
loy as mentioned above [17]. In this material, the triple-Q
structure is observed for 0.35 , x , 0.8. This material
remains metallic even below TN . Because the crystal struc-
ture is the undistorted fcc, one needs to apply uniaxial
stress toward the �1, 1, 1� or �1, 1, 0� direction. Although
the band structure is rather complicated and there is no gap
in the density of states [20], we expect the transverse con-
ductivity sH of the order of e2d�ha 
 1400dV21 cm21

for a � 3.6 Å when the chiral domains are aligned by the
field cooling.

Another candidate is the CT insulator AF NiS2. In this
material the valence of Ni is 21, and the angular orbital
moment is quenched with d8 configuration. Thus spin-
orbit interaction is expected to be small, and this material
is an ideal laboratory to study the spin chirality mecha-
nism. It shows two successive magnetic phase transitions
at TN1 � 40 K and TN2 � 30 K. Between TN1 and TN2,
the magnetic structure is given by Figs. 1a, 1b (type I AF
state). At TN2 the type II AF structure appears in addition
to the type I structure. This is accompanied by the rhom-
bohedral distortion and with the mysterious WF [21]. This
lattice distortion (d . 0) lifts the quasidegeneracy of type
I and type II structures [30]. This brings about finite orbital
ferromagnetism, which can be detected by hysteresis in the
magnetization curve under the magnetic field. Therefore
the present results give a possible scenario for the WF in
NiS2. Even in the temperature range between TN1 and TN2,
where lattice is not distorted spontaneously, suppression
toward the �1, 1, 1� or �1, 1, 0� direction is predicted to bring
about an orbital ferromagnetism. (The compressibility of
this material is of the order of 1023 kbar21 [31 ]and we
need 	140 kbar uniaxial pressure to produce d � 20.1
for example.) Although the dc sH �v� is zero at T � 0 K,
the optical sH�v� is expected to be finite, as shown in
Fig. 2. As for other fcc AF such as Co�SxSe12x�2, de-
tailed studies on the spin structure by neutron scattering
are highly desirable, with which the mechanism of the Hall
effect can be dictated.
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