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Effect of Phonon Scattering by Surface Roughness on the Universal Thermal Conductance
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The effect of phonon scattering by surface roughness on the thermal conductance in mesoscopic
systems at low temperatures is calculated using full elasticity theory. The low frequency behavior of the
scattering shows novel power law dependences arising from the unusual properties of the elastic modes.
This leads to new predictions for the low temperature depression of the thermal conductance below the
ideal universal value. Comparison with the data of Schwab et al. [Nature (London) 404, 974 (2000)]
suggests that surface roughness on a scale of the width of the thermal pathway is important in the
experiment.
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Thermal transport in mesoscopic systems at low tem-
peratures shows universal properties analogous to the
quantized electrical conductance [1]. Theoretical analyses
of phonon transport when the thermal wavelength becomes
comparable to the dimensions of the thermal pathway
predict a thermal conductance K that is independent of
many of the details of the geometry and material proper-
ties [2], and a universal value for K�T � N0p2k2

B�3h
at low enough temperatures [3,4]. (Here N0 is the number
of modes with zero frequency at long wavelengths, equal
to 4 for a single, free-standing elastic beam.) These
predictions have since been connected to more general
results on bounds on entropy transport at low temperatures
[5] and to thermal transport by particles of arbitrary
statistics [6]. The recent confirmation of the universal
thermal conductance in tiny silicon nitride devices [7] is
an experimental tour de force. Although verifying the
predictions of a universal value of K�T at low enough
temperatures, the experiments showed values of K�T that
decrease as the temperature increases in the range of 0.08
to 0.2 K, before beginning to rise at higher temperatures
as more vibrational modes that can carry the heat are
excited.

We [8] and others [9,10] have previously studied a sim-
plified treatment of this problem using a scalar model for
the elastic waves. However, elastic waves in confined ge-
ometries have many unusual features, such as modes with
a quadratic dispersion relation v ~ k2 at small wave num-
bers k and regions of anomalous dispersion dv�dk , 0,
that are not captured in this simple model and might be
expected to have a strong influence on the low temperature
transport.

In this Letter we study the general problem of the scat-
tering of phonons by rough surfaces for a rectangular
cross-section elastic beam using three-dimensional elastic-
ity theory. The scattering of the low frequency modes that
contribute to the conductance at low temperatures depends
on the detailed properties of the elastic modes, and we
find novel power law dependences for the frequency de-
pendence of the scattering off unstructured roughness that
are not those anticipated by simple analogy with Rayleigh
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scattering. In turn this low frequency behavior yields a
depression of K�T at low temperatures with unexpected
power laws, with a faster decrease of K�T as the tempera-
ture is raised than anticipated from the scalar model. Com-
paring these predictions with the experiments of Schwab
et al. [7] suggests that unstructured roughness is inade-
quate to explain the data: instead we find that a roughness
length scale comparable to the width yields a fit consistent
with the experimental trends.

In the ballistic transport regime, the thermal conduc-
tance at temperature T takes the form [2–4]

K �
"2

kBT2

X
m

1
2p

Z `

vm

Tm�v�
v2eb"v

�eb"v 2 1�2 dv , (1)

where the sum is over the modes m propagating in the
structure, vm is the cutoff frequency of the mth mode, and
b � 1��kBT �. The parameter Tm�v� is the transmission
coefficient: Tm�v� fi 1 corresponds to a reduction in the
transport due to some scattering process. At low tempera-
tures, only the modes with vm � 0 contribute, and in the
absence of scattering the conductance takes on its univer-
sal value Ku.

To calculate the transmission coefficient Tm�v� in
Eq. (1) we use a Green function method similar to the
one previously reported in the scalar-wave calculation [8].
The thermal pathway is modeled as a rectangular elastic
beam or waveguide of width W , depth d, and length L
in the x-direction. We assume smooth top and bottom
surfaces corresponding to the epitaxial growth planes, and
rough surfaces at y � 6W�2 1 f6�x� deriving from the
lithographic processing. The functions f6�x� define the
roughness, which we assume to be independent of the z
coordinate and small f6 ø W .

Assuming isotropic elasticity theory, the displacement
field u satisfies the wave equation,

r≠2ui�≠t2 2 ≠Tij�≠xj � 0 , (2)

where r is the mass density, and Tij is the stress ten-
sor, Tij � Cijkl≠kul , with Cijkl the elastic modulus tensor.
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Stress-free conditions apply at the surfaces TijnjjS � 0
with n being the surface normal. The Green function
Gij��x, �x0; t� is defined to satisfy the corresponding equa-
tion with a source term dijd�x 2 x0�d�t 2 t0 �, on the
right-hand side, and stress-free boundary conditions at the
smoothed surfaces y � 6W�2. Using the completeness of
the orthonormal, smooth-surface, elastic modes u

�n�
k �x, v�

at frequency v (with k the wave number along the wave-
guide and n labeling the transverse mode structure), the
Fourier transformed Green function can be written in the
form

Gij� �x, �x0; v� � i
X
n

u
�n��
i � �x 0, v�u�n�

j ��x, v�

2rvy
�n�
g

, (3)

The sum is over the elastic modes n that propagate at fre-
quency v: the condition v�k� � v, with v�k� the dis-
persion relation, defines a discrete set of wave numbers kn

and corresponding mode indices n. For monotonic v�k�
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there is a single solution for k on each branch [defined
by a continuous v�k�], but with anomalous dispersion
there may be multiple solutions. y

�n�
g is the group velocity

of mode n at frequency v.
The stress-free boundary conditions for the propagating

waves apply at the actual (rough) surfaces; expanding in
small f6 leads to effective stress boundary conditions at the
smooth surfaces y � 6W�2, which can then be included
using Green’s theorem. These manipulations lead to the
expression for the scattered field u�sc� to lowest order in the
small roughness in terms of the stress field of the incident
wave at y � 6W�2. The backscattered field from a unit-
amplitude incident wave in mode m is

�u�sc� �
X

n,y
�n�
g ,0

i �u�n���x, v�

2rvy
�n�
g

Z `

2`

f6�x0�G�m,n�
6 �x0, v� dx0,

(4)

with
G
�m,n�
6 �

Z
dz �rv2u

�m�
i u

�n��
i 2 E21��T �m�

xx T �n��
xx 1 T �m�

zz T �n��
zz � 2 s�T �m�

xx T �n��
zz 1 T �m�

zz T �n��
xx �� 1 m21T �m�

zx T �n��
xz �y�6W�2

(5)
(repeated indices i and 6 are to be summed over), where
E is Young’s modulus, m � E�2�1 1 s� is the shear
modulus, s is the Poisson ratio, and T

�n�
ij is the stress field

corresponding to the displacement field u�n�. The mode
sum in Eq. (4) is confined to modes propagating to nega-

tive x, i.e., y
�n�
g �kn� , 0: usually these will be modes with

negative wave numbers kn, but there are also regions of
anomalous dispersion which have a negative group veloc-
ity for positive kn. Notice that Eq. (4) is comprised of
separate kinetic, compression, and shear terms.

We now study the thin plate limit d ø W [11,12],
which yields closed form expressions for the displacement
fields of the modes (in terms of a dispersion curve v�k�
given by a numerical solution of a simple transcendental
equation). This approach correctly accounts for the impor-
tant properties of the elastic modes, for example, exactly
reproducing the small k dispersion relations, including the
quadratic dispersion of the bend modes, and showing re-
gions of anomalous dispersion, while at the same time al-
lowing analytic progress.

Thin plate theory should be quantitatively accurate for
many mesoscopic experiments where the thickness of the
sample (formed by epitaxial growth) is often much less
than the width (given by lithography). The dispersion
curves in the thin plate approximation are shown in Fig. 1.
Note that the modes polarized in the plane and perpendic-
ular to the plane (flexural modes) do not couple.

An important simplification in thin plate theory is that
all z components of the stress tensor Tiz,Tzi in Eq. (5) may
be put to zero [11]. The expression for the flux scattering
rate (per unit length of rough waveguide) from mode m to
mode n at frequency v, defined as jy

�n�
g �y

�m�
g j times the

ratio of the mode intensities, simplifies to
gm,n�v� �
v2g̃�km 2 kn�

2jy
�m�
g y

�n�
g jW2

Ç Z
dz

Ω
f

�m�
i f

�n��
i 2

Ekmkn

rv2 f�m�
x f�n��

x

æ
y�W�2

Ç2
, (6)
where f gives the transverse dependence of the modes
u

�n�
i � eiknxf

�n�
i � y, z�. To arrive at this expression we

performed an ensemble average over the surface rough-
ness function f6�x�, and g̃�k� is the spectral density, i.e.,
the Fourier transform of the roughness correlation function
g�x� defined by

�f�x�f�x 0�	 � g�x 2 x0 � , (7)

where f is f1 or f2, and we assume independent scatter-
ing off the two rough surfaces introducing a factor of 2
into Eq. (6). For weak scattering the transmission coef-
ficient appearing in the equation for the thermal conduc-
tance Eq. (1) can be obtained as Tm � e2gmL with gm �P

n,y
�n�
g ,0 gm,n, where we sum only over the backscatter-

ing, since scattering into forward propagating modes does
change the heat transport.

We first study the scattering behavior for unstructured
“white noise” roughness, g̃�k� � g̃�0� independent of k.
At low frequencies only the four lowest modes with zero
onset frequency survive (the compression mode and a
115502-2
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FIG. 1. Dispersion relation for in-plane modes (solid lines)
and flexural modes (dashed lines) for a geometry ratio d�W �
0.375 and Poisson ratio 0.24. The wave numbers are scaled with
the width W and the frequencies by W�ct with ct �

p
m�r.

bending mode polarized in the plane, and the torsion mode
and a second bending mode polarized perpendicular to the
plane). Explicit expressions for the scattering coefficients
from these modes, gm�v�W4�g̃�0�, are shown in Table I
as a function of the scaled frequency v̄ � vcE�W with
cE �

p
E�r the propagation speed of extension waves in

the beam. Notice that the backscattering from the com-
pression mode to the time reversed mode, and from the
torsion mode to its time reversed mode, has the v2 depen-
dence anticipated in analogy with 1d Rayleigh scattering
(as indeed was found in the scalar-wave calculation). On
the other hand, scattering to or from the bending modes
introduces quite different power law dependences that will
dominate at low frequencies. Most of this novel behavior
can be understood simply from the prefactor in Eq. (6),
g / v2�y

�m�
g y

�n�
g , since yg goes to a constant at small

frequencies for the compression and torsion modes, and is
proportional to v1�2 for the bending modes. The remain-
ing part of Eq. (6), the integral over z, is O�1� as v ! 0,
except for the flexural bending mode backscattering where
the kinetic and stress contributions cancel at leading order.
Note also that the expressions for the flexural modes in-
volve additional factors of the width-to-depth ratio W�d,
so that in the thin plate limit these modes will be scattered
more strongly at a given v.
TABLE I. Scattering coefficients for the zero onset frequency modes at low frequencies: c denotes compression, b denotes bend,
t denotes torsion, bb denotes bend-to-bend scattering, etc. Values are quoted for gmW 4�g̃�0� as a function of scaled frequency
v̄ � vcE�W . For the flexural bend-to-bend scattering (bb) the terms in the braces in Eq. (6) cancel to leading order, resulting in
very small O�v̄3� scattering. There is no scattering between in-plane and flexural modes for the z-independent roughness assumed.

In-plane Flexural

cc bb bc,cb tt bb tb,bt

2v̄2
p

3 v 35�4

23�2 v̄3�2 9�11s�
4 �Wv̄

d �2 O�� Wv̄

d �3� 35�4�11s�1�2

4 �W v̄

d �3�2
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The low temperature thermal conductance can be
derived directly from the low frequency scattering ex-
pressions: if we write these as gL � Av̄p , then the
corresponding contribution of the suppression of the
thermal conductance is

dK�Ku � AIp�T�TE�p (8)

where TE � h̄cE�kBW , and Ip is the integral

Ip �
3

p2

Z `

0
dy

yp12ey

�ey 2 1�2 , (9)

giving the same power law for the temperature dependence.
Figure 2 shows the scattering coefficients over an ex-

tended frequency range, again with g̃�k� � const. The
phonons are strongly scattered at each mode onset fre-
quency, as a result of the zero group velocity and the corre-
spondingly large density of states to scatter into. We find
additional strong scattering in the regions of anomalous
dispersion (e.g., vW�ct 
 5�, since again these portions
of the dispersion curve are quite flat. Also, since the group
velocity of the in-plane bending mode approaches zero,
the scattering of this mode increases relative to others as
v ! 0. This agrees with the low frequency analysis, g /

v. For intermediate frequencies 0.08 , vW�ct , 1.8
the scattering of the torsion mode is larger than for the
other modes.

With this detailed understanding, we now attempt to fit
the experiments of Schwab et al. We focus on the data
below 0.4 K, where thin plate theory captures the rele-
vant modes [13]. To compare with experiment we first
subtract the measured conductance from the ideal conduc-
tance predicted using the cutoff frequencies calculated nu-
merically by using the xyz approach [14] and d � 60 nm
and W � 160 nm: this gives us an estimate of the effect
of scattering which we can compare with our calculated
scattering. The data processed in this way (Fig. 3) show
an abrupt onset of scattering at some nonzero tempera-
ture (T � 0.08 K): this does not appear to be consistent
with the power law behavior predicted using unstructured
roughness [Table I and Eq. (8)]. Notice that the discrep-
ancy is worse than anticipated in the scalar-wave calcula-
tion [8], which gave larger exponents for the power law
dependence. The delay in the onset of scattering suggests
that the phonons with long wavelength are not much af-
fected by the rough surfaces. To accommodate this fact,
115502-3
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FIG. 2. Scattering coefficient gmW 4�g̃�0� of the lowest (zero
onset frequency) modes to all other modes for unstructured
roughness; dash-dotted line: compression; solid line: in-plane
bend; dashed line: flexural bend; dotted line: torsion. The in-
set shows the magnified view at low frequency with the same
quantities plotted.

we have investigated the scattering by roughness centered
around a finite length scale k21

0 , using the parametrization

g̃�k� �
p

p d2ae2a2�k2k0�2

. (10)

For k0a * 1 this results in strongly reduced scattering at
long wavelengths. There are three roughness parameters
that now characterize the surfaces: the roughness ampli-
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FIG. 3. Thermal conductance reduction relative to the uni-
versal value Ku as a function of temperature. Circles: data of
Schwab et al. subtracted from the predicted ideal conductance;
solid line: predictions from the elasticity calculation. The inset
shows the thermal conductance relative to the universal value
Ku as a function of temperature. Circles: data of Schwab et al.;
dotted line: ideal conductance calculated using the xyz
method; solid line: fit from elasticity theory with scattering.
The roughness parameters used were a�W � 3, d�W � 0.11,
and k0W � 4.7.
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tude d, the correlation length a, and shift k0. We ob-
tain a reasonable fit to the low temperature onset of the
scattering using parameters a�W � 3, d�W � 0.11, and
k0W � 4.7. These parameters correspond to significant
roughness at length scales comparable to the width of the
device, which appears consistent with the electron micro-
graph of the structure used [15].

In summary, we have examined the scattering of
phonons by surface roughness and the effect on the
universal thermal conductance. At low temperature, the
scattering shows strong dependence on the mode structure.
In this temperature range, the elasticity model provides
a better understanding of the scattering behavior and a
reasonable fit to the experimental data, if we assume that
the roughness is concentrated at a length scale comparable
to the lithographic scale. Further experiments at lower
temperatures would provide a useful test of the predictions
of the theory.
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