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Finite clusters with a small number of charged particles immersed in a complex-plasma environment
have been investigated experimentally. Finite clusters in complex plasmas are shown to be a unique
system for the excitation and observation of normal modes in bounded charged-particle systems. In
systems of 3, 4, and 7 particles, normal-mode oscillations have been excited and from the frequencies
of the different modes the key parameters, particle charge, and the screening strength have been derived.
This method is proposed to be applied in future microgravity experiments.
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Finite Coulomb clusters are systems of a small number
of charged particles, N � 1 to 100, confined by an external
potential. Such charged-particle systems are a topic of high
interest to various fields of physics starting with theoretical
investigations related to Thomson’s classical atom model
[1]. Three-dimensional (3D) Coulomb clusters are found
for ions in Paul and Penning traps [2,3]. 2D Coulomb
clusters have experimentally been realized as electrons on
liquid helium [4], in quantum dots [5], or in colloidal sus-
pensions with macroscopic particles [6,7]. Very recently,
2D Coulomb clusters have also been prepared and stud-
ied in laboratory complex plasmas [8,9] and 3D clusters
are expected in future experiments under microgravity. It
will be shown here that finite clusters in complex plasmas
are a unique paradigm for the excitation, observation, and
quantitative analysis of weakly damped normal modes of
bounded charged-particle systems in general to reveal the
key cluster parameters. The excitation of normal modes
will be an indispensable diagnostic for future experiments
under microgravity, where the resonance method [10] is
not applicable.

Because of the small number of particles involved clus-
ters are especially intriguing for detailed theoretical studies
and simulations. Cluster structures [11,12] as well as phase
transitions, eigenmodes, and energy spectra have been cal-
culated [11,13,14].

Typical laboratory experiments on complex plasmas
are performed in parallel plate rf discharges. Monodis-
perse microspheres are immersed in the gaseous discharge
plasma of electrons, ions, and neutrals. Since the electrons
are much more mobile than the ions, the microspheres
attain a high negative charge of the order of several thou-
sand elementary charges [10]. The particles are trapped
in the space charge sheath above the lower electrode
where the electric field force levitates the microspheres
against the gravitational force. Because of this force
balance the particles arrange in a horizontally extended
2D structure. Under an additional horizontal confinement
the particles arrange in 2D finite clusters.

The structure and dynamics of finite clusters is de-
termined by the interplay of potential energy in the
1 0031-9007�01�87(11)�115002(4)$15.00
confining well and the mutual Coulomb repulsion of the
microspheres. The electrostatic interaction in the hori-
zontal plane is usually described by a screened Coulomb
(Debye-Hückel or Yukawa) potential, as confirmed by
recent experiments on compressional waves [15,16] or by
the analysis of binary collisions [17]:
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where Z is the charge number of the microspheres and
lD is the screening length due to shielding by the ambient
plasma electrons and ions. The total energy of the system
of N particles is then given by the sum of their potential
and electrostatic energy
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Here, v
2
0 is a measure of the strength of the horizontal

parabolic confinement, ri is the distance of the ith particle
from the center of the potential well, and rij is the relative
distance between particles i and j.
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the total energy can be written conveniently as [11]
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where E and ri are now normalized quantities and

k �
r0

lD
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is the screening strength.
2D clusters of N particles can exhibit a number of nor-

mal modes. The mode frequencies are obtained from the
eigenvalues and the particle motion results from the eigen-
vectors of the dynamical matrix [13,14]

Eab,ij �
≠2E

≠ra,i≠rb,j
(6)
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with a and b � x, y and ra,i denotes the x or y coordinate
of the ith particle.

For the case of pure Coulomb interaction �k � 0� there
are three normal modes that are independent of the particle
number N [13]: (i) v � 0 for the rotation of the entire
cluster around the center of the confinement, (ii) v � v0
(twofold degenerate) oscillation of the center-of-mass of
the cluster in the horizontal potential well, and (iii) v �p

3 v0 corresponds to a coherent radial oscillation of all
particles (breathing mode). For screened interaction �k fi

0�, the frequency of the first two modes is unaffected since
they do not involve a relative particle motion. In contrast,
the frequency of the breathing mode becomes dependent
on k and, weakly, on the particle number N .

In the experiments, we will focus on these three modes
and a fourth one, where neighboring particles oscillate
radially in the opposite direction (antisymmetric mode),
see below. The frequency of that mode also depends on
particle number and screening strength. We will present
measurements that allow a simultaneous determination of
these eigenmodes in 2D clusters in a complex plasma with
N � 3, 4, and 7 particles. From the frequencies of the
different modes the defining parameters of finite clusters,
the confinement potential v0, screening strength k, and
the particle charge Z, are measured.

The experiments have been performed in a capaci-
tively coupled parallel plate rf discharge operated in
argon at a quite low gas pressure of 1.6 Pa to ensure
weak damping. The lower electrode was operated at
13.56 MHz and 9 W forward and 1 W reflected power
with a peak-to-peak voltage of Vpp � 37 V. The
upper electrode and the discharge vessel were grounded
(see Fig. 1a). Melamine/formaldehyde microspheres of
9.47 mm diameter �m � 6.73 3 10213 kg� are dropped
into the plasma and form a 2D finite Coulomb cluster
above the lower electrode. The horizontal confinement
for the particles is realized by a shallow circular parabolic
trough in the electrode (see Fig. 1a). The 2D Coulomb
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FIG. 1. (a) Scheme of the experimental setup; (b) images of
the equilibrium of the clusters with N � 3, 4, and 7 particles.
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clusters of microspheres are illuminated by a laser sheet
and are recorded from the top with a charge-coupled
device (CCD) video camera.

The normal modes are excited by a pulse modulation
of the rf electrode voltage. Therefore, the output of the
rf generator is reduced to a lower value �Vpp � 27 V�
for 30 ms and, after that, increased to the constant value
of 9 W again. During the low rf power pulse the cluster
shrinks in size and is restored to the original size again
thus starting oscillations in the cluster. The oscillations
are a superposition of the normal modes of the cluster.
Vertical oscillations in the sheath potential that are also
excited have been neglected due to the fact that the vertical
amplitude is smaller than the horizontal and that it is a
coherent oscillation of all particles.

The different normal modes of the cluster are then iden-
tified from the trajectories of the particles according to the
eigenvectors of the modes. First, the center-of-mass mo-
tion of the cluster is calculated. Second, the radial and
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FIG. 2. Normal modes of the N � 4 cluster. (a) rotation
around the center of the potential well, (b) center-of-mass
motion, (c) breathing mode, (d) antisymmetric mode. The
symbols denote experimental values. The lines are best fits of
damped oscillations to the experimental data.
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TABLE I. Experimentally determined values of the mode fre-
quencies v in 1�s for the different clusters. The error range is
the standard deviation from the analysis of 10 to 20 different
excitations.

N Center-of-mass v0 Breathing vbr Antisymmetric vas

3 7.50 6 0.14 15.42 6 0.10 · · ·
4 7.91 6 0.13 16.14 6 0.10 6.93 6 0.45
7 7.60 6 0.17 15.82 6 0.06 9.66 6 0.43

angular positions of all particles in the cluster are deter-
mined with respect to the center-of-mass. The breath-
ing mode is then obtained as the oscillation of the sum
of the radial positions

P
ri�N . Finally, the antisymmet-

ric mode is determined from the alternating sum, i.e.,
�r1 2 r2 1 r3 2 r4��4 when using the N � 4 cluster as
an illustrative example.

The measured oscillations are shown in Fig. 2 for the
N � 4 cluster. In Fig. 2(a), the nonoscillatory �v � 0�
rotation around the center of the potential well is shown for
10 s. The center-of-mass motion [Fig. 2(b)], the breathing
mode [Fig. 2(c)], and the antisymmetric mode [Fig. 2(d)]
are presented over a time of 2s. The modes exhibit a
damped harmonic oscillation at frequencies of the order
of 1 to 2 Hz. The oscillation frequencies and damping
constants are derived by a best fit of a damped harmonic
oscillation. The measured frequencies of the normal modes
for the center-of-mass motion v0, for the breathing mode
vbr, and for the antisymmetric mode vas are listed in
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FIG. 3. Normalized frequencies of (a) the breathing mode and
(b) the antisymmetric mode of the N � 4 cluster as a function
of k. The shaded areas correspond to the measured values of
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Table I for the clusters of 3, 4, and 7 particles. Because of
the odd number of particles in the ring the N � 3 cluster
does not exhibit an antisymmetric mode.

The frequencies of the breathing vbr and the antisym-
metric vas mode have been calculated as a function of
screening strength k from Eq. (6). The normalized fre-
quencies, i.e., v

2
br�v

2
0 and v2

as�v
2
0 , are shown in Figs. 3

and 4 for the N � 4 and the N � 7 particle clusters, re-
spectively. The curves for the breathing mode are very
similar for both clusters. As expected, the frequency of the
breathing mode starts at v

2
br�v

2
0 � 3 for pure Coulomb

interaction �k � 0�. Then, the mode frequency increases
with screening strength. This counterintuitive result can
be understood as follows. With increasing k, the radial
position ri of the microspheres in the horizontal confine-
ment well is reduced, the clusters become smaller due to
the reduced Coulomb repulsion (see Fig. 5). With reduced
distance, the curvature of the Debye-Hückel potential in-
creases more strongly than the force, i.e., r≠2f�≠r2 .

2≠f�≠r, which in turn leads to the observed increase of
the mode frequency. The size reduction is accompanied by
an increase of potential energy with respect to the Coulomb
energy (see Fig. 5). In a simplified picture, this means that
under the “pressure” of the confinement the particles are
pushed into regions with steeper curvature of the interac-
tion potential.

The frequency of the antisymmetric mode shows a dif-
ferent behavior for different cluster sizes (N � 4 and 7).
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FIG. 4. Normalized frequencies of (a) the breathing mode and
(b) the antisymmetric mode of the N � 7 cluster as a function
of k. The shaded areas correspond to the measured values of
v
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FIG. 5. (a) Normalized particle positions in the confining well
(solid line) and Coulomb energy over potential energy (dashed)
as a function of k for a N � 4 cluster.

For the N � 4 cluster, the mode frequency has only a
weak dependence on the screening strength, whereas for
the N � 7 cluster the antisymmetric mode frequency in-
creases with screening strength in a similar way as the
breathing mode. This different behavior can be attributed
to the presence of the central particle in the case of the N �
7 cluster which makes the antisymmetric mode stiffer.

By comparison of the measured values of the frequen-
cies of breathing and antisymmetric mode with the theo-
retical curves the screening strength k has been derived for
the different clusters; see Figs. 3 and 4. The obtained val-
ues for k are listed in Table II. From the breathing mode
a screening strength of k � 2.1 6 0.4 is a consistent re-
sult for all clusters. Using the normalization to the par-
ticle distances k0 � ri�lD the screening strength is found
to be k0 � 1.05 6 0.2 in very good agreement with ear-
lier results obtained by wave experiments in extended 2D
systems [15,16,18]. From the antisymmetric mode the
screening strength is derived with less accuracy. For the
4-particle cluster the entire range of k , 7.5 is com-
patible with the observations. The value for k derived
from the N � 7 cluster is somewhat larger than that from
the breathing mode, but the error ranges overlap.

Since from the experiments all quantities (v0, all par-
ticle positions and interparticle distances ri , rij, as well as
the screening strength k) are known, the particle charge
number Z can also be obtained. In doing so, one has to
consider that k and Z are related through Eqs. (3) and (5).
The charge numbers are listed in Table II using the values
from the breathing mode. They are found to be centered
around Z � 18 000 with an overall error range of 6000 ele-
mentary charges. This charge value compares very well
with those obtained from collision experiments under simi-
lar conditions [17].

In conclusion, 2D finite clusters in complex plasmas pro-
vide a unique system to excite and to study weakly damped
normal modes in bounded systems of charged particles.
From the complex oscillations in finite clusters the nor-
mal modes have been extracted. By comparison of mea-
sured and calculated frequency ratios of different modes
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TABLE II. Values of the screening strength k and the particle
charge Z for the different clusters derived from the measured
mode frequencies.

Antisymmetric
N Breathing mode mode Breathing mode

3 k � 2.17 6 0.4 · · · Z � 14 500 6 1500
4 k � 1.98 6 0.3 k , 7.5 Z � 17 000 6 2700
7 k � 2.25 6 0.5 k � 2.92 6 0.7 Z � 22 200 6 5500

the key parameters, i.e., the confinement frequency v0, the
screening strength k, and the particle charge Z have been
derived. The close agreement with the results from laser
excited waves in plasma crystals demonstrates the accuracy
and reproducibility that is now achieved for the charge and
screening of the microspheres in a complex plasma. The
results from normal modes in 2D are promising for ex-
tending this technique to 3D clusters that form under mi-
crogravity. There, normal-mode analysis will be one of
the key diagnostics for determining the particle charge and
shielding effects.
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