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Asymmetric Kinks: Stabilization by Entropic Forces
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Asymmetric kinks bridging two adjacent potential valleys of equal depth but different curvature are
unstable against phonon modes. When coupled to a heat bath, a kink-bearing string tends to cross over
into the shallower valley; kinks are thus predicted to drift in the appropriate direction with velocity
proportional to the temperature, in close agreement with numerical simulation. When contrasted by a
mechanical bias, these entropic forces give rise to a rich phenomenology that includes configurational
phase transitions, double-kink dissociation, and noise-directed signal transmission.
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The Brownian motion of asymmetric solitons provides
an analytically tractable example of how thermal fluctua-
tions in extended systems may generate temperature de-
pendent entropic forces, besides the customary stochastic
forces responsible for diffusive processes.

Let us consider an elastic string at finite temperature,
confined to a symmetric bistable potential subjected to an
external tilt. The system overall is asymmetric; the min-
ima of the tilted potential are separated by an energy gap
De but, as long as the tilt may be treated as a perturba-
tion, their curvatures remain the same. On bridging the
two parallel valleys, the string forms symmetric solitons
(kinks and antikinks); solitons are unstable under transla-
tions (namely, undergo Brownian motion driven by a drift
force proportional to De), but their shape is not deformed
appreciably [1–3].

A different type of asymmetry manifests itself when the
string potential is internally deformable [4], so that the en-
ergy gap De may vanish, but the curvatures at the valley
bottoms grow different. In this case the very profile of the
string solitons is asymmetric and thermal fluctuations seem
to push them sidewise, as noticed first in an earlier numeri-
cal study [5]. Effects related to this type of asymmetry
have not been investigated any further even if they may
affect dramatically the transport properties of string mod-
els of wide application in solid state physics (dislocations,
magnetic flux lines in type-II superconductors), biophysics
(neuron signal propagation, polymer chains) and statistical
mechanics (domain walls in order-disorder transitions).

In this Letter, we address a fairly simple question. Look
at the tilted bistable potential V�f� in Fig. 1 with the left
valley 1 lower but narrower than the right valley 2; sup-
pose that the elastic string f�x, t� rests across the potential
barrier (centered at f � f0) so as to form a kink f12 as
shown, i.e., f12�x ! 2`� � f1 and f12�x ! 1`� � f2;
let the string be subjected to equilibrium thermal fluc-
tuations with temperature T and strong viscous coupling
(without loss of generality we can restrict our discussion
to the overdamped regime): In which direction will the
kink f12 drift under the combined action of the external
tilt and the internal potential asymmetry?
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A simple energetic argument, certainly valid in the
�0 1 1�D case of a single Brownian particle, suggests
that f12 ought to travel to the right as the string would sit
preferably in the lower valley. We show here that the actual
behavior of an asymmetric kink is more complicated and
depends critically on the string temperature.

The string dynamics is modeled by the field equation

ftt 2 c2
0fxx 1 v2

0V 0�f� � F 2 aft 1 z �x, t� , (1)

where c0 is the limiting propagation speed of a phonon
pulse, v

2
0 is the (maximum) potential barrier height, and

F is a tunable external tilt, we introduce as an auxiliary
control parameter for later use. The coupling to an equi-
librium heat bath is characterized by the viscous damping
constant a and the Gaussian noise z �x, t� with zero mean
and autocorrelation function

�z �x, t�z �x0 , t0�� � 2akTd�x 2 x0�d�t 2 t0� . (2)

The local minima f1,2 of the bistable potential v
2
0V �f�

are a distance a � f2 f1 apart, differ by the energy gap
De � v

2
0 �V �f2� V �f1��, and their curvatures v

2
1,2 �

v
2
0V 00�f1,2� control the asymmetry of the kink f12

through the parameter Dv � v1 v2. For convenience
we choose De $ 0 and Dv $ 0.

FIG. 1. Kink in a tilted asymmetric potential. Potential V �f�
and other string parameters are specified in Fig. 3.
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Let us consider first the simpler case of an unbiased
kink, that is a potential V0�f� with degenerate minima,
say V0�f1,2� � 0, so that De � 0. The corresponding
unperturbed kink f12�x, t� is a solution of Eq. (1) with
a � T � F � 0 [i.e., zero right-hand side (rhs)]; its im-
plicit form [6]

x 2 ut �

µ
1 2

u2

c2
0

∂1�2 d
p

2

Z f12�x2ut�

f0

dfp
V0�f�

(3)

describes a relativistic quasiparticle with size d � c0�v0,
constant speed u with juj , c0, rest energy

E0 � v0c0

Z f2

f1

p
j2V0�f�jdf , (4)

and mass M0 � E0�c2
0. The antikink f21�x, t� is defined

through Eq. (3) upon reversing the sign of its rhs.
The stability analysis of an unbiased asymmetric kink

[4] is illustrated in Figs. 2(a) and 2(b). In linear approxi-
mation small kink deformations are expandable on the ba-
sis of the orthogonal eigenfunctions x�x, t� � c�x�e2ivt

with

2c2
0cxx 1 Ṽ0�x�c � v2c . (5)

This stability equation is easily mapped into a one-
dimensional Schrödinger equation for the asymmetric well
Ṽ0�x� � v

2
0V 00

0 �f�0�
12 �, where f

�0�
12 denotes a static kink cen-

tered, say, at the origin [note that limx!6`Ṽ0�x� � v
2
2,1,

see Fig. 2(b)]. The Goldstone mode v � 0 governs the
kink translation, while the phonon modes with v

2
k . v

2
2

exert a net pressure on the kink f12. This property is ap-
parent in the frequency range �v2, v1�: phonons impinging
on the kink from the right get reflected back, thus nudging
it to the left.

As the unbiased kink f12 is unstable under small oscil-
lations, we expect that thermal fluctuations push it to the
left, likewise [5]. In order to estimate the ensuing thermal
force Fth acting upon the kink center of mass, we turn a
stopping tilt F on, so that kinks f12 and antikinks f21 form
a dilute gas in thermal equilibrium [i.e., zero net (anti)kink
current]. In the transfer-matrix formalism [6–8] this corre-
sponds to imposing the “tunnel-splitting” condition in the
eigenvalue problem for the kink-antikink gas free-energy,

Ĥ�f�hn�f� � enhn�f� , (6)

where

Ĥ�f� � 2
h̄2

2m�

d2

df2
1 V0�f� 1 V0 2

F

v
2
0

f , (7)

m� � �h̄v0c0�kT�2 and V0 is a T -dependent energy off-
set. Equations (6) and (7) describe a quantum particle with
coordinate f and mass m� confined to the asymmetric
double-well V0�f� 1 V0 and subjected to the additional
stopping tilt F�v

2
0 . Assume now that the two potential

wells centered at f1,2 may be approximated to nonover-
lapping parabolic wells with curvature v

2
1,2, respectively.

The difference between the lowest eigenvalues in the two
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FIG. 2. (a) The ADW potential (12) with v0 � 1, b1 � 0.5,
and b2 � 5.0. Correspondingly, f1,2 � 71, f0 � 20.50,
v1 � 9.23, and v2 � 1.46; (b) The relevant potential Ṽ0�x� of
the stability equation (5). The Goldstone mode and a reflected
phonon with v2 , vk , v1 and c0 � 30 are drawn for reader
convenience (dashed curves). (c) The average f12 speed u (in
units of c0) versus kT (in units of E0 � 1.80c0v0) for a � 50
and c0 � 60 (circles) or c0 � 90 (squares). All the remaining
parameter values are as in (a). The solid line represents the
temperature dependence predicted in (11).

parabolas vanishes under the following condition for the
stopping tilt

aF

v
2
0

�
h̄

2
p

m�
�
p

V 00
0 �f2� 2

p
V 00

0 �f1� �

� 2
kT

2c0v0

v1 2 v2

v0
. (8)

As a consequence, the internal asymmetry effects on the
soliton dynamics are equivalent to those produced by an
external tilt Fth with intensity

aFth �
kT

2d

Dv

v0
. (9)

From the perturbation approach of Refs. [1,2] we conclude
that a tilted asymmetric f12 (or f21) undergoes Brownian
motion with Langevin equation (LE)

M0Ẍ � 2aM0
�X 7 �De 1 aFth� 1 j�t� , (10)

where M0 is the soliton mass, X�t� is the coordinate of
its center of mass, and j�t� is a Gaussian noise source
with zero mean and autocorrelation function �j�t�j�0�� �
2aM0kTd�t�. In the zero tilt case, De � 0, the thermal
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force 7aFth drives the kink (antikink) to the left (right)
with stationary speed uth,

uth

c0
� 7

kT
2E0

Dv

a
, (11)

independent of c0 —being E0 ~ c0v0, see Eq. (4).
We summarize now the limitations implicit in our deriva-

tion of (9)–(11): (i) kinks and antikinks have been treated
in the dilute gas approximation, kT ø E0, that is impos-
ing low soliton densities n0�T� ø d21 and nonrelativistic
speeds �u2� ø c2

0 [7,9]; (ii) the stopping tilt F should not
affect much the curvature of the minima of the tilted po-
tential v

2
0V0�f� 2 Ff, i.e., jaFj ø v

2
0 or, for Eq. (9)

to apply, Dv�v0 ø c0v0�kT ; (iii) the smaller energy
quantum h̄v2 of parabola 2 (we agreed to take Dv $ 0)
must be larger than the tunnel-splitting energy e1 e0 in
Eq. (6), that is v2�v0 ¿ dn0�T � [6,8]; (iv) the soliton
force 7aFth has been computed under the stronger as-
sumption that the distance between valleys 1 and 2 of the
tilted potential may be approximated to the unperturbed
value a, i.e., v1,2 * v0.

For a quantitative comparison with the theory above we
simulated Eqs. (1) and (2) for the asymmetric double-well
(ADW) potential of Ref. [5]:

v2
0V0�f� �

µ
1 2 exp�b1�f 2 1��
1 2 exp�b1�f0 2 1��

3
1 2 exp�2b2�f 1 1��
1 2 exp�2b2�f0 1 1��

∂2

. (12)

The minima of V0�f� are located at f1,2 � 61, its barrier
is v

2
0 � 1 high and centered at f � f0 (see caption of

Fig. 2). Our simulation code is a framework based on
Numerical Python and custom C libraries; time integration
is performed by means of a modified Mil’shtein algorithm
(see caption of Fig. 3 and Ref. [9]).

The kink center of mass X�t�, defined by f12�X, t� �
f0, is expected to fluctuate according to the LE (10) with
De � 0. The average kink velocity u � � �x� is plotted in
Fig. 2(c) as a function of the temperature: Our simulation
data are closely reproduced by law (11). It should be
noticed that in the LE (10) temperature enters not only the
random force j�t�, as customary in the theory of Brownian
motion, but also the drift force 7aFth. This effect (not
to be mistaken for a solitonic ratchet [10]) is entropic in
its nature, reflecting the tendency of the string to occupy
the potential valley 2, where it may access the maximally
disordered configurations compatible with its equilibrium
temperature.

We are now in the position to answer the initial question
about the direction of kink propagation in the tilted ADW
potential of Fig. 1, chosen for convenience of the form

v2
0V�f� � v2

0V0�f� 1 FVf , (13)

with V0�f� given in Eq. (12). The tilt in Eq. (13) tends
to push f12 to the right with constant driving force De 	
aFV , whereas the internal asymmetry of the ADW poten-
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FIG. 3. (a) Normalized string distributions (solid curves) for
T1 , Tc and T2 . Tc (arbitrary units) in the tilted ADW po-
tential (13) with F � 0.1 (dotted line) and V0�f� plotted in
Fig. 2(a); (b) String center of mass fcm versus kT for the po-
tential in (a) (integration step Dt � 5 3 1023, string length
N � 104, lattice constant Dx � 1, see text for details).

tial exerts on f12 a force (9) to the left proportional to kT .
The two mechanisms are expected to balance one another
at a critical temperature Tc, such that

kTc � 2dDe

µ
v0

Dv

∂
. (14)

We investigated such a temperature controlled configura-
tional transition by simulating the relaxation of a string ini-
tially distributed at random between valleys 1 and 2: The
corresponding kinks (antikinks), no matter how numer-
ous, drift to the right (left) for T , Tc and vice versa for
T . Tc; independently of the initial conditions, the string
eventually collapses into one valley as shown in Fig. 3(a).
Such a transition is indeed very sharp; the critical tem-
perature Tc can be determined numerically with an accu-
racy that increases with the length of the simulation runs.
After 108 integration steps, our simulation yields kTc �
2.95 4 3.00 to compare with the estimate kTc 	 3.05 ob-
tained from prediction (14) [see Fig. 3(b)].

Thermal forces may affect the stability properties of the
asymmetric deformable periodic (ADP) potentials, too (see
the example of Fig. 4). The rich phenomenology of these
double-well periodic potentials has been studied mostly
numerically by many authors [4,11] (for a review, see
Ref. [3]). In the absence of fluctuations stable kinks are
those connecting two adjacent valleys 1 by crossing the
enclosed valley 2; hence the notation f121 employed in
114102-3
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FIG. 4. (a) The ADP potential (15) for A � 0.95 and B �
1.01. The potential parameters are f1 � �2n 1 1�p and f2 �
2np with n � 0, 61, . . . , v

2
0 � 2.31, v1 � 13.13, v2 � 0.32,

and De � 0.39; (b) Double kink f121 at zero temperature (solid
curve) and close to the dissociation point for c0 � 60 (crosses).
The latter has been computed by averaging the string configura-
tion over time at T � 0.95Tc (100 subsequent snapshots taken
10 time units apart). The expected value of kTc is 3.65 to com-
pare with the numerical estimate of 3.85 6 0.05.

Fig. 4(b). A double kink f121 may be regarded as a super-
position of two partials f

�
12 and f

�
21, both unstable against

the drag due to the energy gap De: f
�
12 and f

�
21 drift to-

wards one another (the former to the right, the latter to the
left), thus making f121 stable. Vice versa a kink f212 con-
necting two adjacent valleys 2 is unstable. This exhausts
the stability problem, e.g., of the double sine-Gordon string
[11]. For the ADP potential [4]

v2
0V�f� � �1 2 A2�

1 2 B cos2f

�1 1 A cosf�2
(15)

in Fig. 4(a), instead, the problem is complicated by the
different curvatures v1,2 of valleys 1 and 2 that, in view
of our analysis, tend to pull f

�
12 and f

�
21 apart. A straight-

forward generalization of the argument leading to Eq. (14)
allows us to determine the critical temperature above
which the entropic forces acting upon the partials f

�
12 and

f
�
21 overcome the binding force of f121, namely kTc �

2c0�De�Dv�. Above Tc the double kink f121 is predicted
114102-4
to dissociate according to the action-mass law

f�
21 1 f121 ! f212 1 f�

21 , (16)

with the objects on both sides being ordered from the left
to the right as indicated and the partial f

�
21 traveling to the

right throughout the reaction process. As T approaches Tc

from below, the double kink f121 gets broader and broader
until for T � Tc the partials f

�
12 and f

�
21 break loose

[Fig. 4(b)]. As a result, for T . Tc thermal fluctuations
stabilize valleys 2 over valleys 1.

The mechanism of stochastic stabilization introduced
here applies also to situations where fluctuations are fed
in externally. This is the case, for instance, of the neu-
ron cable model in neurophysiology, lately investigated by
physicists [12] in the framework of stochastic resonance
[13]. The string f�x, t� is replaced by a chain of linearly
coupled bistable oscillators of the type (12). The result-
ing array obeys a discretized version of the field equation
(1), where z �x, t� is broken up into independent on-site
noise sources zi�t�. Internal asymmetry, e.g., f0 fi 0 in
an ADW chain (12), is likely to make the cable model
much more interesting: (i) sustained by strong fluctuations,
a signal can be transmitted in an otherwise less favorable
direction (i.e., against an external voltage) according to a
threshold mechanism; (ii) suprathreshold fluctuations are
likely to fuel signal propagation more effectively than they
garble it.
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