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A New Determination of G Using Two Methods
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We present the results of a measurement of G made with a torsion-strip balance used in two substan-
tially independent ways. The two results agree to within their respective uncertainties; the correlation
coefficient of the two methods is 20.18. The result is G � 6.675 59�27� 3 10211 m3 kg21 s22 with a
standard uncertainty of 4.1 parts in 105. Our result is 2 parts in 104 higher than the recent result of
Gundlach and Merkowitz.
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There has in recent years been considerable uncertainty
as to the correct value of the Newtonian gravitational con-
stant, G, despite precision measurements extending back
two centuries [1,2]. We note in particular the value from
Michaelis et al. [3] of the PTB (Braunschweig) that dif-
fered from the 1986 CODATA value by �0.6 6 0.008�%.
There is still no explanation for this large discrepancy, al-
though we present here one possible effect that could have
led to an error of this magnitude. A number of recent pa-
pers [2,4] give values rather closer to the CODATA value,
particularly the paper by Gundlach and Merkowitz that
gives a result with the very low uncertainty of 14 parts
per million (ppm). We report here a new determination
of G, which has a standard uncertainty of 41 ppm. Our
value is unique in that it is based on two results obtained
using the same apparatus but with different methods of
measurement. Our result does, however, differ from that
of Gundlach and Merkowitz by some 200 ppm.

The BIPM torsion balance [5] (see Fig. 1) has the fol-
lowing principal features: (1) a four-mass configuration to
give a much reduced sensitivity to external gravitational
fields; (2) a torsion strip to give much improved stability
with practically no dependence on the material proper-
ties of the strip; (3) a gravitational signal torque of 1.7 3

1028 N m, some 4 orders of magnitude larger than in most
previous comparable experiments; this improves the ratio
of gravitational signal to nongravitational noise and allows
a very precise measurement to be made in a short time;
(4) three possible methods of operation, (a) electrostatic
servo control, (b) free-deflection (Cavendish method), and
(c) change in period of free oscillation; the result presented
here is based on (a) and (b), the timing precision of the
third method not at present being sufficient to give a useful
result; (5) dimensional metrology that is quick and accu-
rate by having the whole apparatus mounted on the base
of a coordinate measuring machine (CMM).

The source and test masses are made from Cu-0.7%Te
free-machining alloy. They are right-circular cylinders
with heights equal to their diameters and with masses of
12 and 1.2 kg, respectively. The test masses are mounted
on a radius of about 120 mm around the periphery of an
1-1 0031-9007�01�87(11)�111101(4)$15.00
aluminum-alloy disk suspended from the torsion strip in-
side a vacuum chamber.

The torsion strip is made from Cu-1.8%Be dispersion-
hardened alloy of thickness t � 30 mm, width
b � 2.5 mm, and length L � 160 mm. It is loaded to
800 MPa, about 80% of its yield strength. The torsion
constant, c, is given by c � bt3F�3L 1 Mgb2�12L,
where F is the shear modulus of elasticity and g is
the local gravitational acceleration. For our strip, the
second (gravitational) term is 27 times larger than the first
(elastic) term, which thus makes up less than 4% of the
total. Anelasticity in the suspension is thus much reduced,
leading to a high mechanical Q of the system, 3 3 105,
and very small zero drift of less than 1 mrad per week.
The high Q removes as significant sources of concern
systematic biases caused by the anelastic aftereffect [6],
or a frequency-dependent torsion constant [7]. The natural
period of torsional oscillations is 125 sec; thus the balance
has a ring-down time of some five months.

FIG. 1. Outline of apparatus: T, test masses; S, source masses;
D, torsion balance disk; B, torsion strip; C, carousel; L, drive belt;
M, mirrors for sixfold multiplying optics; A, autocollimator.
© 2001 The American Physical Society 111101-1



VOLUME 87, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 10 SEPTEMBER 2001
Outside the vacuum chamber, the four source masses are
mounted symmetrically on a radius of about 214 mm on
an aluminum-alloy carousel belt-driven by a stepping mo-
tor. When aligned radially with the test masses, the source
masses produce no torque on the balance. When rotated
in either direction by 18.7± the gravitational torque is at its
maximum. Angular deflection of the balance is measured
by an Elcomat 2000 autocollimator through sixfold multi-
plying mirror optics.

In the servo-controlled method, the gravitational torque
of the source masses is balanced by an electrostatic torque
acting directly on the test masses. Control of the balance
is by applying ac voltages, V , at a frequency of 1 kHz
between the test masses themselves and a pair of thin ver-
tical cylindrical copper electrodes placed about 1 mm from
the masses. This geometry produces a very linear varia-
tion of capacitance, C, between the electrodes and the
test masses. The electrostatic torque constant is cali-
brated directly in SI units by determining dU�du, the
change in total electrostatic energy as a function of an-
gle where U � �1�2�

P
ij Cij�Vi 2 Vj�2, and Cij is the

capacitance between one copper electrode and the other
electrode, the masses and the vacuum can. Calibration is
accomplished by measurement of all dCij�du. The rela-
tion between G and the measured and calculated quanti-
ties is G � t�G, where t is the measured torque and G is
the gravitational coupling constant between the torsion bal-
ance and source masses. By holding the balance at a fixed
angular position during the torque measurement, anelastic
effects in the suspension are eliminated, although as noted
below in the case of the Cavendish method, anelasticity
in our suspension leads to insignificant error. We at first
used a dc servo system but were unable to eliminate the
possibility of frequency-dependent losses that could ren-
der the calibration of dCij�du at 1 kHz inconsistent with
the dCij�du at 1 mHz during the servo control. Biases in
the calibration were such as to increase the apparent value
of G in contradiction to the result of our recent theoreti-
cal study [8]. In this study we considered only loss mecha-
nisms due to surface films on the electrodes. However,
it can be shown that a grounded lossy dielectric located
in the electric field will add, in parallel, a frequency-
dependent capacitance such that measurement of dCij�du

at high frequency overestimates the calibration constant.
We encountered the possibility of such a bias in our early
work by noting that the Q of the torsion balance was halved
on application of 2 kV dc to the electrodes. We later iden-
tified a coaxial cable affected by the fringing field of a pair
of electrodes. We suggest that a similar effect may have
been present in the PTB measurement since in their experi-
ment the calibration and measurement frequencies differed
by orders of magnitude, as was the case in our preliminary
work. Such problems are eliminated by using an ac servo.

In the Cavendish method the torsion balance is allowed
to move in response to the movements of the source
masses. At equilibrium, the applied gravitational torque
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is balanced by the suspension stiffness. The angular de-
flection, u (about 80 mrad), is related to the applied torque
t by Hooke’s law: t � cu, where c is the stiffness of
the suspension. Also t � GG, where G is the same func-
tion of the mass distribution as for the servo-controlled
method. We obtain c from the period of free oscillation
T and the moment of inertia I of the suspended system
(calculated from dimensional and mass metrology) using
the relation c � Iv2.

Common to both methods is the calculation of G,
the gravitational interaction between the source and test
masses; this was done by two different methods. The first
uses the analytical expression for the radial acceleration
field of a right cylinder [9], integrated numerically over
the volume of a test cylinder to find the force between a
source and test mass. The second uses a multipole expan-
sion to determine the force between a source and test mass
[10,11]. Corrections were applied for the gravitational
attraction of the air displaced by the source masses.

A critical parameter in all measurements of G is the
uniformity of density of the attracting masses. For both
source and test masses we measured the density inhomo-
geneities by hydrostatic weighing of samples cut from the
original ingots and, for the source masses, by determina-
tion of center of gravity from measurements of period of
free oscillation when supported on an air bearing. Samples
were afterwards cut from the source masses themselves.
We found that the density varied linearly across the di-
ameter of the source masses by an amount, Dr0 from axis
to perimeter, that increased from about 1 to 2 parts in 104

along the length of the ingot. Such a transverse linear den-
sity gradient results in a cosf dependence of density in
each source mass. Inner mass multipole moments, e.g.,
q11, were therefore present in the source masses that were
not accounted for in the analysis described above. A more
detailed analysis (following the method given by Urso and
Adelberger [10]) shows that these inner moments interact
with outer moments, e.g., Q22, of the test masses. These
moments can, in turn, be calculated from the inner mo-
ments of the test masses using results from Trenkel and
Speake [11]. This calculation shows that the torque be-
tween the two masses, whose centers are a distance a apart,
has an extra term,

DG

G
�

5
6

Rs

a

Dr0

r0
cosf0 cosf , (1)

where Rs is the radius of the source mass, f is the orien-
tation of the q11 multipole, and f0 is the angle between
the line joining the centers of the source and test masses
and that between the centers of source mass and torsion
balance; 21.3± for a source mass offset of 18.7±. Using the
measured density homogeneities, the maximum fractional
error is about 90 ppm for one source mass. When the
torques due to all source and mass pairs are summed, this is
reduced to 232, 20.4, and 36 ppm, depending on the ori-
entation of the source masses. Thus the errors of the
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torques at three angular positions of the test masses 120±

apart average almost to zero. A linear axial variation of den-
sity amounting to 100 ppm over the length of each source
mass was also found by hydrostatic weighing. This intro-
duces an axial shift in the centers of mass of about 1 mm,
which in turn produces a negligible change in torque.

In the (far smaller) billet from which the test masses
were cut, a significant azimuthal dependency was not
found to within the uncertainty of our measurements.
The accuracy of the density measurements were limited
to 65 ppm but, owing to the shape of the samples used,
linear variations of 9 ppm could not be ruled out. Using
Eq. (1) to calculate the analogous torque error for the
test mass inhomogeneity, we find a maximum fractional
change in torque for a single mass pair of about 1.7 ppm.
We would expect that, when summed over all pairs, this
would be reduced to less than 1 ppm. This was considered
negligible and was not included in the uncertainty budget.

The variation of density across a radius would shift the
center of gravity of the test masses, and this would in-
troduce an error in the calculation of the moments of in-
ertia. If we have a density gradient across the diameter
of a cylinder with Dr � Dr0�r�Ri� cosf, the shift in the
center of mass of the cylinder can be calculated as dr �
�Dr0�r� �Rt�4�. Assuming a random orientation of the
masses, the first-order fractional change in the moment of
inertia of the torsion balance is given as DI�I � dr�d

p
2

where d is the average radial distance of the center of the
masses from the axis of rotation. This amounts to a change
of much less than 1 ppm in the moment of inertia which is,
again, negligible. This systematic effect, if present, would
show up differently in the Cavendish and servo methods.

The servo value of G is based on the 25 measurements
of torque shown in Fig. 2. All data points were used. Each
was corrected for the small effect of density inhomogeneity
appropriate to the orientation of the source masses given
in Fig. 2.

The Cavendish value of G is based on 38 measurements
(each of 4 h duration) of angular deflection. All data points

FIG. 2. Results of the servo measurements: the bars represent
the combination of the uncertainties of the fit of the 10 h of data
and the calibrations of the servo before and after each run; the
different orientations of the source masses are indicated.
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were used and each was corrected for residual anelastic
effects in the strip �213 6 4� ppm and for the density
gradient in the source masses �132 6 6� ppm at the single
orientation used. Both the servo and Cavendish data were
corrected (1.000 268 5) for the refractive index of air [12],
whose effect was to decrease the measured value of G in
the servo method and increase it in the Cavendish method.

Among the many additional checks and auxiliary mea-
surements were the following: (1) the source mass posi-
tions were permuted with respect to the test mass positions
in 90± increments; (2) the source masses were removed
from the carousel and the torque of their kinematic mounts
on the balance was measured; (3) the test masses were
removed from the disk so that the torque of the source
masses on all the other components of the torsion balance
could be measured; this test also demonstrated the absence
of a tilt perturbation correlated with the movement of the
source masses; (4) a second CMM was used to verify the
reproducibility of about 1 mm for the dimensional mea-
surements; (5) parasitic magnetic forces were estimated to
be negligible based on the measured properties of all mate-
rials used in the apparatus. In the most critical cases, these
conclusions were tested by experiment.

Our final result for the servo method is G � 6.675 53 3
10211 m3 kg21 s22 with a standard uncertainty of 6.0 parts
in 105 and for the Cavendish method is G � 6.675 65 3

10211 m3 kg21 s22 with a standard uncertainty of 6.7 parts
in 105. The uncertainty budget for the whole experiment
is given in Table I.

A detailed analysis shows that the uncertainties of the
two measurements have a correlation coefficient of 20.18.
This coefficient, defined as the covariance of the two mea-
surements divided by the geometric mean of their variances,
is a measure of the independence of the two methods.
Note that the servo-control method relies essentially on
electrical measurement while the Cavendish method relies
on timing and that the mass of the test cylinders is elimi-
nated in the Cavendish method since it appears in both t

and G. The same relative angle error would produce an
equal but opposite error in the servo-control and Cavendish
methods and thus would be eliminated in the mean of the
two results. However, there is not complete cancellation
of the angle uncertainties here because in the Cavendish
method there is an additional uncertainty due to nonlineari-
ties in the autocollimator at small angles.

The combined final result, the mean of (a) and (b) is
thus G � 6.675 59�27� 3 10211 m3 kg 21 s22 with a
standard uncertainty, taking account of correlations, of
4.1 parts in 105.

In conclusion, the close agreement of the results of our
two substantially independent methods is evidence for the
absence of many of the systematic errors to which a G
measurement is subject. Nevertheless, the two most ac-
curate measurements of G, this one and that of Gundlach
and Merkowitz, differ by more than 4 times their combined
standard uncertainty, Fig. 3. We examined the possibility
111101-3
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TABLE I. Uncertainty budget.

Contribution to
uncertainty in G

Source (parts in 105)

(a) Servo method:
Test mass value 0.25
Source mass value 0.25
Test and source mass coordinates 3.2
Angle calibration 2
Calibration of electrical instruments 4
Mean of torque measurements (n � 25) 2.3

Subtotal 6.0

(b) Cavendish method
Test mass value 0
Source mass value 0.25
Test and source mass coordinates 2.4
Timing 3.5
Angle calibration 4
Anelasticity 0.4
Source-mass density inhomogeneity 0.6
Mean of deflection measurements 3.2

(n � 38)
Subtotal 6.7

Average of (a) and (b),
taking account of correlations

Mass values 0.3
Test and source mass coordinates 2.2
Source-mass density inhomogeneity 0.3
Anelasticity 0.2
Capacitance calibration 2
Angle calibration 1
Timing 1.75
Means of torque and deflection 2.0

Combined uncertainty 4.1

that this discrepancy could be put down to a failure of the
inverse square law, since the effective distances apart of
the source and test masses are different. Considering a plot
of the strength versus range of a new interaction modeled

FIG. 3. The present result compared with measurements of G
published since 1997 [13].
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as a Yukawa potential; at 7 cm the violation of the inverse
square law required to eliminate the discrepancy between
the results at the 1s level is a factor of about 3 above
the 1s limit set by Spero et al. [14]. The difference is
thus likely still to be due to systematic errors, at the level
of one or two parts in 104, hidden in one or both of the
measurements. Nevertheless, it now seems certain that the
1996 result of Michaelis et al., discrepant by 0.6%, was in-
deed subject to some systematic error, perhaps one related
to losses in the dc servo system as we suggest above.

We thank J. Sanjaime and the staff of the BIPM me-
chanical shop for constructing the balance, J. Hostache for
assistance with data acquisition and electronics, and F. De-
lahaye and D. Reymann for the calibration of the electrical
measuring instruments. Mass, time, and electrical mea-
surements were based on BIPM standards; dimensional
metrology was based on sets of end gauges calibrated
by the Bureau National de Métrologie (France) and angle
measurements on calibrations of the Elcomat kindly car-
ried out for us by the PTB.
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