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We present a practical method to generate classical trajectories with fixed initial and final boundary
conditions. Our method is based on the minimization of a suitably defined discretized action. The
method finds its most natural application in the study of rare events. Its capabilities are illustrated by
nontrivial examples. The algorithm lends itself to straightforward parallelization, and when combined
with ab initio molecular dynamics it promises to offer a powerful tool for the study of chemical reactions.
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The dynamics of complex systems is often character-
ized by the occurrence of rare but important events, such
as chemical reactions, diffusion processes, and molecular
conformational changes. The reason for the slowness of
these processes is related to the existence of energetic bar-
riers larger than kBT that separate the initial from the final
state, leading to reaction times far larger than those cur-
rently computationally available. In many cases [1–4] the
transition state is first located and the reaction rates later
enhanced using transition state theory. In a complex sys-
tem the potential energy surface (PES) is very rugged and
exhibits many stationary points. In such a case the very
concept of transition state as a saddle point in the PES is
called into question.

Elber and Karplus [5] have suggested an innovative ap-
proach. Rather than starting from the initial state and look-
ing for a transition state, they consider a path that connects
the initial and the final states. This approach is in spirit
similar to the more modern nudged elastic band approach
of Jonsson et al. [6]. The method is appealing since it fo-
cuses on the global character of the path rather than on
local properties of the PES. However, the paths do not
reflect the real dynamics as the system crosses the bar-
rier. Following a seminal work of Pratt [7], the importance
of determining the real dynamical path has been empha-
sized very recently by Chandler and collaborators [8] who
have proposed a method for statistically sampling dynami-
cal paths. This new method is a very significant step to-
wards the study of rare events in complex systems, as it
requires neither the assumption of transition state theory
nor the existence of a single well defined transition state.
Its only prerequisite is the knowledge of at least one reac-
tive dynamical trajectory. However, determining the initial
trajectory is often difficult. A general strategy suggested
by Chandler and collaborators has been to anneal very un-
likely trajectories. This procedure is computationally de-
manding and does not guarantee that the system ends up
in the desired final state.

Our work addresses this very general problem: given
an initial and a final configuration, what are the dynamical
paths that connect them? In mathematical terms this is a
two-point boundary value problem. The standard bound-
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ary conditions for Newton’s equations fix instead the initial
values of positions and velocities.

In principle the way to determine the dynamical path
from configuration A to configuration B has been known
since 1744 when Maupertuis proposed the principle of
least action, published a few years later. A more precise
mathematical formulation is due to Hamilton. In mod-
ern terms Hamilton’s principle can be written as follows.
Given a classical dynamical system described by the set of
coordinates q, its trajectory q�t� with boundary conditions
q�0� � qA and q�t� � qB is determined by locating the
stationary point of the action:

S �
Z t

0
L���q�t�, �q�t���� dt , (1)

where L is the Lagrangian L � T 2 V , and T and V are
the kinetic and potential energy, respectively. By varying
S under the condition that the initial and final points of the
trajectory are fixed [9], Newton’s equations of motion fol-
low. We want to turn this well-known principle into a use-
ful computational tool. To this effect, following Gillilan
and Wilson [10] we discretize the trajectory into P equis-
paced intervals and estimate the action as

S �
P21X
j�0

D

∑
1
2

µ
qj 2 qj11

D

∂2

2 V �qj�
∏

, (2)

where q0 � qA, qP � qB, D � t�P is the time interval
in which we discretize t and we are considering unitary
masses. Equation (2) is obtained by using the most primi-
tive quadrature for the action integral and by estimating the
velocities from the difference between successive points in
the trajectory [11].

The stationary point of this action is expressed by a set
of P 2 1 linear equations:

2qj 2 qj21 2 qj11 2 D2 ≠V �qj�
≠qj

� 0 ; (3)

that is, the stationary point of the discretized action is a
Verlet trajectory, which is a trajectory that is identical to
what would have been generated by the well known Verlet
algorithm. A straightforward search for the stationary
point of S [Eq. (2)] is, however, very difficult, since the
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action is bounded neither from above nor from below and
we are looking for a stationary point, not necessarily a
maximum or a minimum. Furthermore, the nature of the
stationary points depends on D. This makes the search
for the solution of Eq. (3) difficult, since it becomes a
root-finding problem, which in order to be solved requires
a good guess of the solution and a Newton-Raphson pro-
cedure [12]. The latter step involves the calculation of the
second-order derivatives of the potential.

Alternatively, in order to find the solution of Eq. (3) one
can look for the minimum of the function:

O �
P21X
j�1

µ
2qj 2 qj21 2 qj11 2 D2 ≠V�qj�

≠qj

∂2

, (4)

which is very close to the discretized version of the
Onsager-Machlup (OM) action, as introduced by Olender
and Elber [13]. Locating the minimum of this action
again involves the evaluation of second-order derivatives.
This, for an ab initio molecular dynamics (MD) or for
the study of large systems within ordinary MD, is a
prohibitively expensive task. Furthermore, in the practice
the trajectories thus generated may have a poor energy
conservation, especially in the region of the transition
state, as we shall show in the following.

We present here a method which generates accurate tra-
jectories and requires only the calculation of the forces.
To this effect we shall use the fact that the Newton tra-
jectory has to conserve total energy. This is also approxi-
mately true for the Verlet trajectories. If D is sufficiently
small the Verlet trajectories do not strictly conserve energy,
but instead the energy oscillates around a roughly constant
value. We shall take advantage of this property of the
physically relevant trajectories and supplement the action
with a penalty function which favors the energy conserving
trajectories:

Q�qj , E� � S 1 m

P21X
j�0

�Ej 2 E�2. (5)

Here m determines the strength with which we enforce en-
ergy conservation, Ej � �qj 2 qj11�2��2D2� 1 V�qj� is
the instantaneous energy, and E is its target value. Our defi-
nition of the kinetic energy is different from that which is
normally used in the Verlet algorithm, in which the veloci-
ties are estimated by the more accurate central difference
method. Nevertheless, also Ej is approximately conserved
and for simplicity’s sake we shall use this definition here.
E corresponds to the yet undetermined physical energy.

For large m the second term in Eq. (5) dominates, and
the functional Q�qj, E� has a minimum. For small m, on
the other hand, S will determine the character of the Q
extremum. The two regimes are separated by a critical
value m�. In all the systems studied, we have found that
there exists a rather large interval of values of m . m�

such that Q has a minimum and this minimum is globally
very close to the Verlet trajectories.
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Whenever the target energy E is not known, we can
minimize Q relative to the qj and to E. This procedure
allows us to focus on the physically relevant values of E.

In order to minimize Q more efficiently, we follow [12]
and make the transformation

qj � qA 1
jD

t
�qB 2 qA� 1

PX
n�1

an sin

µ
pn

jD

t

∂
, (6)

thus automatically satisfying the boundary condition. The
advantage of using the an rather than the qj is that the
an have a global character. In practice, we first optimize
Q with respect to a relatively small number of an, thus
capturing the global feature of the trajectory, and then we
add the higher frequencies. Each time we use a standard
conjugate gradient algorithm to minimize Q. This requires
only the evaluation of the forces. The scaling is therefore
linear in the number of degrees of freedom rather than
quadratic as in other approaches where second derivatives
are needed.

We illustrate the performance of the functional Q in a
series of examples. The most elementary one is a one-
dimensional double well potential already studied in
Ref. [13]. In this simple case it is easy to find a Verlet
trajectory oscillating between the two minima. If we start
from this trajectory and add a random component, we find
that for m � 0 a minimum or a maximum cannot be found
and the Verlet trajectory corresponds to a saddle point.
This leads to unstable behavior. We therefore studied
the behavior of Q with respect to m. We found that for
m , m� (which depends on D) we could not locate a
stationary point. In particular, from the direct calculation
of the Hessian matrix at the stationary point, we could
extrapolate the change of sign of its lowest eigenvalue
exactly at m�. The behavior of Euclidean distance in the
close neighborhood of m� foreshadows the closeness to
the onset of the instability.

For larger values of m, however, we find solutions very
similar to the Verlet trajectory. In order to measure the
accuracy of the Q solution, we evaluated the norm of the
distance between the Verlet trajectory and the minimum,
as well as the function O in Eq. (4). The results shown in
Fig. 1 give a comparable but not identical estimate for the
optimal value of m. It must be stressed, however, that to
all interests and purposes, the variational solutions and the
original Verlet trajectory are globally very close, which
makes the precise choice of m not critical. This is very
important, since in most cases the exact trajectory is not
known; in such cases only the criterion of minimal O can
be used to optimize m.

The second example is a minimization of a trajectory
in a two-dimensional configurational space, namely in the
Mueller potential [14], which was invented as a nontrivial
test for reaction path algorithms: it has two main minima
and a third minimum that somewhat hinders the trajectory
from seeing the saddle point.
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FIG. 1 (color). Euclidean distance between the Q trajectory
and the practically exact Verlet trajectory (red, left scale) and
OM action value (blue, right scale) as a function of m in a one-
dimensional double-well potential of the type U�x� � 1�2�x2 1
A exp�2ax2� 2 B�, with B � 1�a�log�aA� 1 1�, A � 80 and
a � 0.043 75 [13]. With these parameter values, the two min-
ima are located at 65.33 and the barrier height is 14.2. The
integration time step is D � 0.31 and the total number of P
points is 64. The starting guess for the minimization of Q is a
randomized Verlet trajectory. For m � m� � 0.39 the Hessian
of Q ceases to be positive definite. In the inset, the Verlet tra-
jectory (red) is compared with our solution (blue) at m � 100.

We directly compared our results with those of
Ref. [13]. Both sets of trajectories lead to an apparently
satisfactory result. They pass exactly through the saddle
point, and the overall behavior of the trajectories is clearly
physical. Our trajectory has, of course, a larger value of
O. However, the O trajectory shows poorer energy con-
servation close to the transition state, as we see in Fig. 2.
This is due to the fact that the optimization of O is global
and local errors leading to energy nonconservation have
little weight. Of course, one could also supplement O with
a penalty function to improve the energy conservation;
this would still require the calculation of second-order
derivatives.

As a last and far less trivial example we look at a process
in which the central atom of a seven-atom two-dimensional
Lennard-Jones cluster migrates to the surface. This pro-
cess has been studied in detail by Dellago et al. [15]. Our
calculations reproduce their highly nontrivial results: in
Fig. 3 (top panel) we show how two of the paths we found
correspond to the most probable ones found through the
elaborate procedure of path sampling in [15]. As can
be seen in Fig. 3, the dynamical path has to pass sev-
eral transition states. This is a severe challenge for other
methods.

It has been suggested by Zaloj and Elber [16] that the
O trajectories can be used to increase the value D beyond
what is normal in ordinary MD. The basic assumption is
that by so doing, the effect of the higher frequencies is
integrated out and leads to a Gaussian distribution of the
108302-3
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FIG. 2 (color). Upper panel: Q trajectories (blue crosses) and
O trajectories (red dots) on the Mueller potential energy surface
[13]. The potential energies of the two lowest minima are 2146
and 2106, and the transition state is located at 241 (same units
as in [13]). Lower panel: energy as a function of time for our
trajectory (blue line) and O trajectory (red line). As in Ref. [13]
we have taken a time step of 0.01; the total number of points
was 300. The regions of accumulation of blue points correspond
to the two lowest minima.

errors:

ej � 2qj 2 qj21 2 qj11 2 D2 ≠V �qj�
≠qj

. (7)

With this in mind, we calculated the distribution of the
errors ej , defined by (7). We verified that in the Q trajec-
tories, the ej appear to be normally distributed. Thus one
can implement an accelerated MD scheme in the spirit of
Ref. [16].

In conclusion, we have presented a novel method for
generating dynamical trajectories with preassigned initial
and final boundary conditions. The method can be easily
implemented within the Car-Parrinello MD approach, of-
fering a powerful tool for the study of chemical reactions,
and can be combined with path sampling. Its advantages
over previous schemes are the fact that it requires only the
calculation of the forces, its numerical stability and the
quality of the trajectories: the latter is a direct product of
the energy conservation constraint.
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FIG. 3. Upper panel: Two of the paths [(a) and (b)] followed
by a two-dimensional cluster of seven atoms for the migration
of a central atom to the surface. In Lennard-Jones units the total
time is 3 and the time step was taken to be D � 0.06. The initial
trajectory was a linear interpolation between the initial and final
points. We show in the picture the sequence of metastable states
visited by the system. Middle panel: potential energy profile.
Bottom panel: conserved energy for the path (b) in the upper
panel. The two intermediate metastable states depicted in the
upper panel are indicated by arrows.

As a side effect, the method can lead to easy localization
of the saddle points without losing the physical soundness
of the solutions. Our approach lends itself to very effi-
cient parallelization. Multiple time-scale approaches are
natural and feasible. We are sure that many other ap-
plications of our method will be found, and we believe
that it is a noteworthy advance in the field of molecular
dynamics.
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