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Continuum Model for Low Temperature Relaxation of Crystal Steps
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High and low temperature relaxation of crystal steps are described in a unified picture, using a con-
tinuum model based on a modified expression of the step-free energy. Results are in agreement with
experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relax-
ation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency
and a low temperature regime for unstable step meandering are found.
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The upsurge of nanotechnologies and of microscopic
visualization techniques (such as scanning tunneling mi-
croscopy) in the past 15 years raises the challenge for mod-
eling crystal surfaces morphology at smaller and smaller
scales. Surface dynamics crucially depends on the underly-
ing microscopic discreteness, especially in nonequilibrium
or low temperature conditions. Accounting for the pres-
ence of crystal steps has allowed some important break-
throughs in the description of growth and relaxation of
nanostructures [1,2]. In this Letter, it is pointed out that
steps themselves exhibit a discrete substructure that drasti-
cally affects their dynamics at low temperatures, and that a
continuum model based on a modified free energy allows
one to account for this low temperature regime.

An isolated step is always rough: Steps do not have
macroscopic facets or sharp angles (see Ref. [2] for a dis-
cussion). This statement has motivated a modeling for
mass transport along steps (edge diffusion), first developed
by Mullins [3], based on a description at length scales
larger than the distance between kinks. Measurement of
the time correlations of fluctuating steps [4] has revealed
a low temperature regime for edge diffusion not explained
by this model. Systematic low temperature deviations from
its predictions have also been reported in experimental and
kinetic Monte Carlo (MC) studies of monolayer island dif-
fusion [5,6], and relaxation from a deformed shape [7].

In the following, a continuum model is presented, based
on a modified expression of the step-free energy that ex-
plicitly accounts for edge atoms (i.e., mobile atoms at
the steps). This model exhibits high and low tempera-
ture regimes in agreement with kinetic MC simulations
and experiments. When mass exchange with neighboring
terraces is allowed, it also accounts for the recently ob-
served step transparency (also called permeability) on high
temperature Si(111) surfaces [8], and for low temperature
wavelength selection of unstable step meandering during
growth [9].

The free energy of a step is traditionally taken to be
proportional to its length [2]:

F0 �
Z

dx g�1 1 �≠xz �2�1�2, (1)
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where z �x, t� is the meander of the step with respect to
the straight step configuration, and ≠x denotes the partial
derivation with respect to x. At low temperatures, one
can neglect atom detachment from steps to terraces [4].
Mass transport then occurs only via mobile edge-atom dif-
fusion along the step edge, and is driven by gradients of the
chemical potential m � V�dF0�dz� � Vg̃k, where V

is the atomic area, d�dz denotes a functional derivative
with respect to z , and g̃ � g 1 g00 is the step stiffness.
Step motion results from the divergence of the local mass
flux j � 2aDL≠xm�kBT , where DL is the macroscopic
diffusion constant for mass transport along the step. Thus,

≠tz � ≠x

∑
aDL

kBT
≠x�Vg̃k�

∏
. (2)

Equation (2) is the usual starting point for studies of edge
diffusion-driven step dynamics. It is always valid for
length scales larger than the distance between kinks, and
long enough time scales.

As an example, let us consider a [110] step on
a Cu(100) surface, where the kink energy is Ek �
0.13 eV [4]. At low temperatures, kink density is Nk �
2 exp�2Ek�kBT ��a, where a is the lattice spacing. The
distance between kinks is then N21

k � 75a for T �
300 K, and N21

k � 103a at T � 200 K. Hence, not
only N21

k ¿ a, but at low enough T , N21
k may be much

larger than observation length scales: Scanning tunneling
microscopy nowadays allows one to study step fluctua-
tions up to atomic scales [4,10], and monolayer clusters
of several nanometers are observed [6]. Moreover, step
relaxation time scales related to edge-atom motion from
kink to kink can also become large when Nk is small.

The very different role played by mobile edge atoms
and atoms incorporated into the solid suggests that the
step should rather be described as a heterogeneous phase
at scales smaller than N21

k . Hence, the total free energy
shall be written as

F �
Z

dx

∑
g�1 1 �≠xz �2�1�2 1

a

2
�c 2 c0

eq�2

∏
, (3)
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for a step wandering about the closed-packed orientation
x̂. c�x, t� is the macroscopic concentration of mobile edge
atoms along the step, as presented in Fig. 1. The term
�c 2 c0

eq�2 accounts for the departure from local equilib-
rium, and will be seen to be irrelevant at high temperature.
We shall see, in the following, how step relaxation based
on Eq. (3) accounts for high and low T regimes in a wide
variety of physical situations. Kinks are not explicitly de-
scribed in this model. Nevertheless, the relaxation of c to
its equilibrium value c0

eq implicitly involves the kink dis-
tribution, as will be seen later.

For small perturbations, Eq. (3) is expanded to second
order in z and u � c 2 c0

eq. At thermal equilibrium,
equipartition implies that each Fourier mode uk or zk of
wave vector k carries the same amount of energy:

g̃

2
k2�jzkj

2� �
a

2
�jukj

2� �
kBT

2
. (4)

As a first mean field approximation, edge atoms can be
considered as noninteracting; thus �jukj

2� � c0
eq [11], and

a � kBT�c0
eq.

Let us now turn to the dynamics. In a way similar to
model C in critical phenomena [12], two evolution equa-
tions are written. The first one for the nonconserved step
position z reads

≠tz

V
� 2A

dF

dz
1 h , (5)

where A is a kinetic coefficient, and h is a Langevin force.
A second evolution equation is written for the conserved
total concentration of atoms (i.e., atoms in the solid and
edge atoms) c � z�V 1 c:

≠tc � ≠x

∑
B≠x

µ
dF

dc

∂
2 q

∏
, (6)

where B is a mobility, and q is a conserved noise. Us-
ing Eq. (3) in Eqs. (5) and (6), a set of coupled evolution
equations is found:

ζ(x,t)

x

c(x,t)

(b)(a)

z

FIG. 1. The step position z �x, t� and the macroscopic edge-
atom concentration c�x, t� are both needed in a continuum de-
scription for low temperature dynamics of crystal steps.
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≠tz

V
� n�c 2 ceq� 1 h , (7)

≠tc � ≠x�B≠xc 2 q� 2 n�c 2 ceq� 2 h , (8)

where n � Aa, and ceq is found to obey a Gibbs-Thomson
relation:

ceq � c0
eq�1 1 Gk� , (9)

where k is the step curvature, and G � Vg̃�kBT is the
capillary length. The obtained evolution equations share
similarities with models of Refs. [13–15]. Nevertheless,
these were not derived from the free energy F . As men-
tioned by these authors, the model [(7) and (8)] leads to
a crossover between two regimes for step relaxation. In
the following, a detailed analysis of step-atom kinetics is
performed, which leads to quantitative predictions.

Following Ref. [16], the correlations of the Langevin
forces are found within a local thermodynamic equilibrium
approximation:

�h�x, t�h�x 0, t0�� � 2nc�x, t�d�x 2 x0�d�t 2 t0� ,

�q�x, t�q�x0, t0�� � 2Bc�x, t�d�x 2 x0�d�t 2 t0� .
(10)

As a first approach, we now propose some phe-
nomenological expressions for the kinetic coefficients.
The macroscopic diffusion constant of edge atoms
along the steps is approximated by that of a tracer edge
atom on a frozen step with a given kink density Nk .
Defining the diffusion constant of mobile edge atoms
between kinks D and the kinetic attachment lengths d6 �
a�exp�E6�kBT� 2 1�, where E6 are the additional energy
barrier (with respect to diffusion) for atoms to stick to a
kink from both sides, and using the result of Ref. [17], it
is found that

B �
D

1 1 Nk�d1 1 d2�
. (11)

The macroscopic attachment coefficient n is the inverse of
the relaxation time of the concentration, which is related
to the time scale of diffusion of a mobile atom from one
kink to another. Hence,

n � BN2
k . (12)

We shall first address the case of a straight step at equi-
librium fluctuating about the close-packed direction x. The
time correlation function,

G�t� � ��z �x, t� 2 z �x, t 1 t��2� , (13)

has been measured in experiments and MC simulations [4].
This quantity is evaluated within the quasistatic approxi-
mation, which stipulates that the edge-atom concentration
reaches a steady state on time scales much shorter than
kink motion. Thus, the left-hand side of Eq. (8) vanishes.
Comparing the quasistatic and full dispersion relations as
in Ref. [18], and using Eq. (12), the quasistatic approxi-
mation is found to be valid when
106104-2
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Ga2c0
eq ø N22

k 1 k22. (14)

At low T , in a simple bond-counting model and for
a step along a high symmetry orientation, Ga2ceq 	
a2 exp�2Ek�kBT � ø N22

k 	 a2 exp�2Ek�kBT�, where
Ek is the kink energy. At high T , c0

eq 	 1�a, Nk 	 a21,
and G ! 0. Hence, the quasistatic limit is valid at all T .

Linearizing Eqs. (7) and (8), in the quasistatic limit,
G�t� is easily evaluated. For large observation time scales,
long wavelength fluctuations l ¿ N21

k dominate, and

Glong�t� �
a2G�3�4�

p
�b2�3�4�Bc0

eq�1�4t1�4, (15)

where b2 � akBT�g̃ is the step diffusivity. This expres-
sion corresponds to the one given in Ref. [19] starting from
the Mullins model Eq. (2), with DL � aBc0

eq as expected
from Ref. [3]. For short observation time scales, only short
wavelengths �l ø N21

k � contribute to G, and

Gshort�t� �
a3�2

p
p

�nc0
eqb2�1�2t1�2. (16)

Using Eq. (12) and the relation b2 	 Nk , valid at low T ,
the crossover between the two regimes is found to corre-
spond to G�t� 	 a2. This result was found by Giesen et al.
[4], by means of a discrete random kink model and MC
simulations. From the relation G�t�� 	 a2, the crossover
time between the two regimes is found to be

t� 	 �N3
k a2Bc0

eq�21. (17)

Thus, the criterion of validity of Eq. (2) is t ¿ t�.
Using numerical values for Cu(11n) vicinal surfaces
given in Ref. [4], one finds t� 	 10219 exp�14 870�T� s,
where T is in kelvin. With observation times t� 	 1 s
[4], the crossover is found for T � 340 K, in quantitative
agreement with experiments [4].

Monolayer cluster relaxation and diffusion might also
be addressed by this model. Let us consider a circular
island having small perturbations about its mean radius R0
defined by R�u� � R0 1 r�u�. The polar coordinates R
and u are used. In a “circular model,” x is simply replaced
in the model by R0u for small perturbations. In the linear
approximation, the relaxation time of a small perturbation
r � e cos�nu� is

tn � 2p
R2

0

nGa2ceq

n2 1 R2
0�n�B�

n2�n2 2 1�
. (18)

A crossover from tr 	 R4
0 when R0 ¿ N21

k to tr 	 R2
0

when R0 ø N21
k is found in agreement with kinetic MC

simulations in Ref. [7].
The divergence of t1 comes from the translational invari-

ance of the cluster position: It costs no energy to move the
cluster as a whole (n � 1 mode). Thus, random motion
of atoms along the periphery will cause diffusion of the
cluster, with diffusion constant (calculated without using
the quasistatic limit):
106104-3
Dc �
�r2

c.m.�t��
4t

�
a4ceq

pR0

1

R2
0�B 1 1�n

, (19)

where rc.m. indicates the position of the center of mass
of the cluster. The high T behavior Dc � a3DL�pR3

0 ,
calculated from Eq. 2 in Refs. [18,20], is recovered when
R0 ¿ N21

k , provided once again that DL � aBc0
eq. In

the low T regime, where R0 ø N21
k , another scaling limit

is found: Dc 	 R21
0 , in agreement with previous experi-

mental [6] or MC [5] studies. The circular approximation
catches the essential physical point, which is the existence
of orientations for which N21

k is much larger than the size
of the cluster. Nevertheless, including anisotropy in our
model is needed for a quantitative comparison with low T
experiments and kinetic MC simulations.

At higher T or during growth, steps exchange mass with
terraces. For low kink concentration Nk ø a21, direct
exchange from kink to terrace can be neglected, and step
meandering is weak, i.e., ≠xz ø 1. An extended model
may then be written, with Eqs. (7), (9), and

≠tc � ≠x�B≠xc� 2 n�c 2 ceq� 1 J1 1 J2 , (20)

J6 � b6C6 2 n6c , (21)

≠tC � Ds=
2C 1 F 2 C�t , (22)

where C is the concentration of adatoms on terraces. Ds is
their diffusion constant, F the incoming flux on terraces,
and t the adatom desorption time. Langevin forces were
omitted in Eqs. (20)–(22) for the sake of clarity in this
brief exposition. 1 and 2 designate the lower and the
upper sides of the step, respectively, n6 and b6 are ki-
netic coefficients. At equilibrium c � c0

eq and C � C0
eq,

and there should be no mass flux (detailed balance) so
that J1 � J2 � 0. Thus, C0

eq�c0
eq � n1�b1 � n2�b2.

Since we address the case of weak meandering, exchange
mass fluxes between steps and terraces are given by J6 �
2Ds≠zC6, where z is defined in Fig. 1. These latter equa-
tions allow one to close the model and to evaluate the
concentration.

In the case of slow diffusion along steps (i.e., B small),
or for long wavelength perturbations (larger than N21

k ), the
first term in the right-hand side of Eq. (20) vanishes. If
an additional approximation is made in taking the varia-
tions of the adatom concentration C on terraces to be
much slower than the relaxation time �n 1 n1 1 n2�21

of the edge-atom concentration c, we can set ≠tc � 0 in
Eq. (20). The resulting model may be written

1
V

≠tz � Ds≠zC1 2 Ds≠zC2 , (23)

Ds≠zC6 � 6b̃6�C6 2 Ceq� 1 b0�C1 2 C2� , (24)

Ceq � C0
eq�1 1 Gk� , (25)

where effective kinetic coefficients are defined
via b̃1�b1 � b̃2�b2 � n��n 1 n1 1 n2�, and
106104-3
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b0 � b1n2��n 1 n1 1 n2�. With Eqs. (22)–(25), we
have obtained the standard [8] model for “transparent”
steps as a special limit. Step transparency (i.e., b0 fi 0)
is understood as the possibility for an atom to attach
to a step from a terrace, and detach to the other terrace
before reaching a kink. Transparency appears as a natural
ingredient of the model Eqs. (7) and (20)–(22).

As a last remark, we shall calculate the most unstable
wavelength for the meandering instability first addressed
by Bales and Zangwill [21], with step relaxation provided
by the full model Eqs. (20)–(22). We use the following
parameters: b2 � 0 and n2 � 0 (i.e., no mass exchange
with the upper terrace); C0

eq � 0, n1 � 0, and b1 ! `
(this implies C1 � 0). Moreover, desorption is taken to be
vanishingly small: 1�t � 0. The growth rate of a small
in-phase perturbation z �x, t� � exp�ivt 1 ikx�zvk of all
steps on a vicinal surface reads

iv �
2k4GBc0

eq 1 F�k� tanh�k�� 1 sech�k�� 2 1�
1 1 �B�n�k2 ,

(26)

where � is the mean interstep distance. The most un-
stable wavelength is calculated in the long wavelength limit
k� ø 1(valid for small fluxes F). One finds

l1 � 4p�GBc0
eq�F�2�1�2, (27)

when N21
k ø l1. In the opposite case N21

k ¿ l1, a low
T regime is found, where

l2 � 21�4p1�2l
1�2
1 N

21�2
k . (28)

Using activation energies given in Ref. [4], one finds that
l1 and l2 follow Arrhenius laws with activation energies
0.38 and 0.12 eV, respectively (within 	10% error). The
low T regime seems to provide the best fit to the ex-
perimental result of 0.09 eV [9]. It is not clear though
how nonequilibrium line diffusion effects pointed out in
Ref. [22] combine or compete with these results.

In conclusion, a model has been presented, based on
Eqs. (3) and (12), that accounts both for high and low tem-
perature step relaxation dynamics observed in experiments
[4,6] and kinetic MC simulations [4,5]. When mass ex-
change with neighboring terraces is added to this model,
step transparency appears as a natural consequence of a
low kink density. We also point out a low temperature
regime for step meandering during growth.

A systematic analysis from a microscopic theory is still
needed for a more rigorous evaluation of the kinetic coef-
ficients B and n. Moreover, numerical solution of the fully
anisotropic model is needed in order to describe quantita-
tively monolayer cluster diffusion and relaxation.

Low temperature relaxation of three-dimensional clus-
ters and nanostructures is a source of long-standing contro-
106104-4
versies [2]. The basic difficulty comes from the singularity
of the free energy for orientations in the vicinity of a facet.
As opposed to this situation, the free energy of a step does
not exhibit singularities. Thus, a direct generalization of
the present study is not possible. Nevertheless, it provides
some milestones for a continuum description of three-
dimensional clusters [23] and nanostructures relaxation.
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