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Dynamical Event during Slow Crack Propagation
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We address the role of material heterogeneities on the propagation of a slow rupture at laboratory scale.
With a high speed camera, we follow an in-plane crack front during its propagation through a transparent
heterogeneous Plexiglas block. We obtain two major results. First, the slip along the interface is strongly
correlated over scales much larger than the asperity sizes. Second, the dynamics is scale dependent.
Locally, mechanical instabilities are triggered during asperity depinning and propagate along the front.
The intermittent behavior at the asperity scale is in contrast with the large scale smooth creeping evolution
of the average crack position. The dynamics is described on the basis of a Family-Vicsek scaling.
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Most studies on fractures have focused on homoge-
neous materials. The role of heterogeneities has been ad-
dressed more recently. For instance, heterogeneities lead
to self-affine long range correlations of fracture roughness
[1,2]. However, the physical influence of heterogeneities
on the crack process is still not fully understood. Static
elasticity leads to long range interactions along the crack
front [3,4] but additional elastic waves, especially recently
observed crack front waves [5,6], create dynamical stress
overshoots which play an important role. In most model-
ing of fracture dynamics in heterogeneous materials, espe-
cially at low speed, the latter are ignored since a quasistatic
assumption is used. Actually very few experimental data
that describe the crack front propagation through hetero-
geneous materials exist. This work presents the very first
experiment where the detailed dynamics of a fracture front
line in a heterogeneous material is investigated. At large
scales, seismic inversions of slip history during an earth-
quake [7] provide hints of the features of the rupture front
but with a low resolution, especially compared to the het-
erogeneity sizes (i.e., asperities). At laboratory scales, a
3D description of a crack front at rest in a heterogeneous
aluminum alloy was obtained by Daguier et al. [2].

Interesting similarities exist between the propagation
of crack fronts through a heterogeneous medium and the
problem of propagation of dislocation lines through a field
of solute atoms. At low temperatures, the dislocation lines
become rough due to pinning by immobile solute atoms
[8—10] adjusting its shape to the local stress.

We describe here an experiment where two Plexiglas
plates are annealed together to create a single block with a
weak interface [11]. Propagation of the crack front along
the weak interface is directly observable because of the
transparency of the material. The plates are as follows:
32cm X 14 cm X 1 cm and 34 cm X 12 cm X 0.4 cm,
and annealed together at 205 °C under several bars of
normal pressure. Before annealing, both plates are sand-
blasted on one side with 50 um steel particles. Sand-
blasting introduces a random topography which induces
local toughness fluctuations during the annealing proce-
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dure. The upper Plexiglas plate is clamped to a stiff alu-
minum frame. A normal displacement is applied by a press
to the lower plate which results in a stable crack propa-
gation in mode T at constant low speed (68 um/s) [12].
The fracture front is observed with a microscope linked
to a high speed Kodak Motion Korder Analyzer camera
which records during 8.7 s at 500 images per second with
a 512 X 240 pixel resolution (1 pixel covers an area of
10 gm X 10 wm). In Fig. 1 is shown a sample image
obtained with this setup where the front is observed from
above. The uncracked part is seen as white (i.e., trans-
parent), while the gray region represents the open fracture
(i.e., nontransparent since the sandblasting procedure un-
polishes the surfaces). The front is defined as the con-
trast boundary. The x and y coordinates are defined in
Fig. 1. The front line position is given by y = a(x,?). In
Fig. 1, samples of fronts separated with a constant time in-
terval dt = 200 ms are superimposed on the picture. Lo-
cal fluctuations of the front movement can be seen from the
variations in the distance between the front lines. We de-
fine a front normal 7 to be normal to the front line and

FIG. 1. Sample of crack fronts. The background is an inverted
raw image covering an area of 5.12 mm X 2.4 mm where the in-
tact material appears white. In contrast, the cracked zone is dark.
Crack propagates in this case from bottom to top (x direction)
because of a tensile mode I load. The 43 solid lines that cor-
respond to the fracture front positions for later times are super-
imposed on the picture. The time delay between each front is
200 ms. Totally 4367 pictures were taken with a time interval
of 2 ms between each picture in this experiment.
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with a positive direction into the uncracked region. Let
V be the local front velocity in the direction of the front
normal. The velocities V at all front positions were cal-
culated by measuring the distance 6/, along the normal,
to the intersection with the front that is 20 ms later. The
distributions of the velocity components V, = Vi - ¢é,
and V, = Vn - e,, respectively, parallel and perpendicu-
lar to the global fracture propagation direction, are shown
in Fig. 2. Here ¢, and ¢, are the unit vectors in the y and
x directions, respectively.

Figure 3 shows the position fluctuations of the crack
front: Sa(x,t) = a(x,t) — {a(x, r)), in gray levels. Dark
grays correspond to pinned regions of the front that evolve
slower than the average crack front (§a < 0). On the con-
trary, light regions are in advance (§a > 0). In Fig. 3b
are plotted the position fluctuations in the space-space
diagram which illustrate the richness of the crack propa-
gation dynamics. Black areas are asperities where the front
is stopped. Arrest periods are localized in space but of any
size and followed by an overshoot propagation that ap-
pears in white. Figure 3a is a space-time diagram of the
same front position fluctuations. Two main aspects of the
figure have to be emphasized. First there are numerous
sharp transitions that appear close to horizontal and very
localized in time. They are triggered after pinning periods
(black regions) and clearly correspond to fast propagation
of dynamical events because of local mechanical instabili-
ties along the front. The second main feature of the figure
is the column aspect which illustrates the dynamics of the
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FIG. 2. Distributions of the velocity components V, and V, in
a linear-log diagram. Distribution tails are shown to decrease
slower than exponential. Velocities are calculated on the basis
of fronts separated with a time interval of 6¢ = 20 ms. The
largest measured local speeds are 3 orders of magnitude larger
than the average front speed V; = 68 um/s. It is important
to note that the speeds V, and V, are average speeds within
the time 6¢ = 20 ms. Much higher speed fluctuations may be
present. Because of front overhangs the local speed fluctuations
V, may also be negative as seen in the distribution.
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crack propagation. Crack front position evolves only be-
cause of the instabilities. Apart from them, there is almost
no evolution of the crack shape.

The dynamic scaling of the fracture front has been
checked by calculating the power spectrum P(k,?) of
the position difference Aa(x,?) = a(x,t) — a(x,t = 0),
where k is the wave number and ¢ is the time (f = 0
corresponds to the first image). The Family-Vicsek scaling
[13] of the power spectrum P(k, f) can be written as

Pk, 1) = 1720/ G (ke'/*) (1)

where G(x) is constant for x < 1 and G(x) o« x~17%¢

for x > 1. The dynamic exponent k gives the scaling
with time of the correlation length that separates both do-
mains &, « e, Many self-affine growth models [14],
fracture models [4], and experiments [14—16] have been
found to exhibit Family-Vicsek scaling. In Fig. 4a, the
power spectrum of the relative position Aa(x, 7) is shown
at different times from 0.03 to 7.11 s. At small times,
no spatial correlation exists and the spectrum appears flat.
For larger times, however, the correlations become appar-
ent, and a crossover to a power law behavior is observed
for large k. For large times data are consistent with a
power law: P(k) o« k~'72¢ with / = 0.6. The latter value
of the roughness exponent has been extensively checked
for fronts at rest over a larger range of scales (5 um
to 50 mm) [11]. This shows that the front roughness is
strongly correlated over a large range of scales significantly
larger than the asperity sizes controlled by the sandblast-
ing particles (50 wm). In Fig. 4b, the scaling function
P(k,1)t=1720/% s plotted as a function of kz'/%. This
data collapse provides an estimate of the dynamic expo-
nent k = 1.2. We emphasize that the exponent might be
different from the dynamic exponent obtained from an ini-
tially flat front. However, the subtraction technique pre-
sented here is the only one experimentally accessible.

b)

= X

FIG. 3. (a) The figure shows the space-time (x,r) diagram
(5.12 mm X 8.7 sec) of the position fluctuations with respect to
the average position of the front da(x,t) = a(x,t) — {(a(x, 1)),
using gray levels. Light gray corresponds to positive values
of 6a, while dark gray corresponds to negative values of da.
(b) A similar gray level representation as in (a) but the space-
space coordinates (x,a(x,r)). The image covers an area of
5.12 mm X 1.08 mm.
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FIG. 4. (a) The power spectrum P(k,t) of the front position
fluctuations Aa = a(x,t) — a(x,t = 0) plotted as a function
of the wave number k. (b) Family-Vicsek scaling: The depen-
dence of the scaling function P (k, )t~ 1720/ with kt'/*. This
data collapse shows the growth of the correlation length (or
crossover length) with time, £, * t1/% and gives an estimate of
the dynamic exponent k = 1.2.

The roughness exponents obtained in our experiment are
not consistent with most present relevant theoretical mod-
els or simulations [4,5,10,17]. The solution of the quasi-
static elastic in-plane crack problem for an initially flat
front propagating in a heterogeneous plane gives the rough-
ness exponent { = 0.35 and the dynamic exponent z =
0.75 [4] different from the experimental results ({ = 0.60
and k = 1.2). However, the experimental results are closer
to a recent theoretical model proposed by Ramanathan and
Fisher [5] in which they solve the elastic problem of a pla-
nar tensile crack in a heterogeneous medium with a full
elastodynamic description. In the ideal case where the
toughness is not dependent on the velocity, they predict
a roughness exponent = 0.5. This model contains elas-
tic waves, and in particular crack front waves [5,6] which
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will create stress overshoot along the fracture front. Stress
overshoot [5,6,18] may be responsible for instabilities and
might explain why we observe in our experiments a very
significant amplification of the localized front propagation
velocities along the fracture line even for a very slow aver-
age propagation. Another approach (self-organized depin-
ning) has been proposed by Sneppen [19] where the front
line is moved in a quenched disorder. The pinning is non-
local because of propagation along the front to equilibrate
the local slope. Surprisingly, the latter model provides a
very close estimate of the roughness exponent { = 0.63
but an underestimate of the dynamical exponent z = 0.7.

Strong analogies exist between crack propagation and
friction [20]. For both phenomena, the evolution of the
mechanical potential energy balances that of the rupture
propagation resistance (surface energy) and that of the ki-
netic energy. We observed (see Fig. 3b) that instabilities
at the depinning transition transform a smooth slow move-
ment of the rupture at large scale to local stick-slip motions
of the crack front. Sticks correspond to periods of asper-
ity pinning (black areas) and slip to the asperity depinning
(white areas) including a sidewise propagation along the
front. The latter are dynamical effects that control most
of the crack propagation. An open question is to define
the range of scales over which the dynamical effects in-
fluence the crack advance and more specifically if there
exist time and space cutoffs above which a quasistatic ap-
proach might be successful. As shown from this study,
crack front velocity fluctuates significantly both in space
and time: over 2 orders of magnitude in space and 3 orders
of magnitude in time (see Fig. 3). Accordingly, the defini-
tion of crack speed average is scale dependent and there-
fore questionable.

Stick-slip motion is very well documented for solid fric-
tion experiments [21]. Dynamical effects during friction
instability (slip weakening, velocity weakening, or rate
and state friction laws) exist and are responsible for the
slip history. For crack propagation, dynamical effects on
the toughness (e.g., toughness sensitivity on crack veloc-
ity) are also shown to exist [22]. Moreover, elastic wave
propagation (especially crack front waves) that involves the
lowest time scales might also influence the propagation for
both phenomena. Because of the speed measurement limi-
tations (in the range from 6 X 1076 to 2.5 X 10~ m/s),
all ranges of dynamical effects are not accessible with our
setup. For instance, distinction between processes involv-
ing fast evolution of the local rupture resistance and wave
propagation is difficult. No process zone at the crack tip
was observed in the experiment above the micrometer scale
(light wavelength). However, process zones are shown to
influence significantly the crack geometry [22,23].

Upscaling of the experimental results to fault mechanics
might provide useful informations on asperity interactions
along the fault plane and new insights for the actual behav-
ior of creeping faults. Recent observations show strong
space correlations of the seismic activity along creeping

105502-3



VOLUME 87, NUMBER 10

PHYSICAL REVIEW LETTERS

3 SEPTEMBER 2001

faults [24]. Our results are consistent with the latter ob-
servations. We show that the slip is correlated along the
interface on a scale much larger than the asperity size. This
is of great importance for the interpretation of rupture het-
erogeneities in terms of large scale geological asperities
from long wavelength inversion of INSAR (interferomet-
ric synthetic aperture radar) or GPS (global positioning
system) or strong motion data [7,25]. We also show that
the dynamics at the asperity scale is very different from
that at large scale. The creep behavior observed at large
scale is negligible at local scale. Dynamical events are
initiated during depinning and propagate along the rupture
front even if the loading at large scale is very slow. Such
local mechanical instabilities or microquake are intermit-
tent but strongly correlated both in time and space and are
responsible for most of the large scale deformation.
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