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Universality of Velocity Gradients in Forced Burgers Turbulence
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We demonstrate that Burgers turbulence subject to large-scale white-noise-in-time random forcing has
a universal power-law tail with exponent 27�2 in the probability density function of negative velocity
gradients, as predicted by E, Khanin, Mazel, and Sinai [Phys. Rev. Lett. 78, 1904 (1997)]. A particle
and shock tracking numerical method gives about five decades of scaling. Using a Lagrangian approach,
the 27�2 law is related to the shape of the unstable manifold associated to the global minimizer.
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The universality of small-scale properties in fully de-
veloped Navier-Stokes (NS) turbulence is frequently in-
vestigated assuming that a steady state is maintained by
a large-scale random force. For structure functions (mo-
ments of increments) universality with respect to the force
is conjectured in the case of three-dimensional NS turbu-
lence and proven for certain linear passive scalar models
(see, e.g., Ref. [1]). The universality of probability density
functions (PDF) for velocity increments and gradients is a
difficult question which, so far, has been mostly addressed
within the framework of the pressureless model of Burgers
turbulence, usually the one-dimensional Burgers equation

≠tu 1 u≠xu � n≠xxu 1 f�x, t� , (1)

with white-noise-in-time forcing [2]. It is generally con-
jectured that, when n ! 0 and the forcing is confined
to large scales, the tail of the PDF of velocity gradients
j at large negative values follows a universal power law
p�j� ~ jjj2a . The actual value of the exponent is, how-
ever, a matter of controversy. Let us briefly recall some of
the arguments found in the literature.

A standard approach is based on studying the inviscid
limit of the Fokker-Planck equation for the PDF.

≠tp 2 ≠j�j2p� 2 jp 1 n≠j��≠xxj j j�p� � B≠jjp ,
(2)

where the right-hand side expresses the diffusion of prob-
ability due to the delta correlation in time of the forcing.
It was pointed out by Polyakov [3] that the inviscid limit
of (2) contains anomalies due to the singular behavior of
the dissipative term n≠j��≠xxj j j�p�. The value a � 3
is obtained if anomalies are ignored [4] or if a piecewise
linear approximation is made for the solutions of the
Burgers equation [5]. An operator product expansion
(OPE) method borrowed from quantum field theory has
been proposed for evaluating such anomalies and an
argument presented in favor of a � 5�2 (actually, for
velocity increments and infinite systems) [3]. However,
this expansion leads to a relation involving unknown
coefficients which must be determined, e.g., from numeri-
cal simulations [6], and restricts the possible values to
0031-9007�01�87(10)�104501(4)$15.00
5�2 # a # 3 [7]. Anomalies cannot be understood
without a complete description of the singularities of the
solutions, such as shocks, and of their statistical proper-
ties. For the case of a space-periodic system (as we shall
assume), a crucial observation made in Ref. [8] is that
large negative gradients stem mainly from preshocks, that
is the cubic-root singularities in the velocity preceding the
formation of shocks [9]. A simple argument was given in
Ref. [8] for determining the fraction of space-time where
the velocity gradient is less than some large negative
value. This leads to a � 7�2 provided preshocks do
not cluster. Determinations of the dissipative anomaly
of (2) have been made by formal matched asymptotics
[10] and by bounded variation calculus [11]. With the
assumption that shocks are born with vanishing amplitude
from isolated preshocks, the value a � 7�2 was obtained
[10,11]. Other attempts to derive a � 7�2 using also
isolated preshocks have been made [12]. Note that there
are simpler instances, including time-periodic forcing [13]
and decaying Burgers turbulence with smooth random
initial conditions [11,14], which fall in the universality
class a � 7�2, as can be shown by systematic asymptotic
expansions using a Lagrangian approach. In the presence
of forcing, the key issues which remained to be settled are
the possible clustering of preshocks and, closely related to
this, the possible birth of shocks with nonvanishing am-
plitude. The results presented hereafter almost completely
rule out such possibilities.

Numerically solving the randomly forced Burgers equa-
tion in the limit of vanishing viscosity in such a way as
to obtain clean scaling for the PDF of gradients represents
a significant challenge. Broadly speaking, there are two
classes of methods. On the one hand, methods involving a
small viscosity, either introduced explicitly (e.g., in a spec-
tral calculation) or stemming from discretization (e.g., in
a finite difference calculation). Viscosity gives rise to a
power-law range with exponent 21 at very large nega-
tive gradients [4] whose presence will make the inviscid
jjj2a range appear shallower than it actually is, unless
extremely high spatial resolution is used. On the other
hand, there are methods which directly capture the inviscid
© 2001 The American Physical Society 104501-1
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limit with the appropriate shock conditions such as the fast
Legendre transform method of Ref. [15] (extended to the
forced case in Ref. [13]). This method is very well adapted
to decaying Burgers turbulence with nonsmooth Brownian-
type initial data [16] but, with spatially smooth forcing, it
leads to delicate interpolation problems which have been
overcome in the case of time-periodic forcing [13]; with
white-noise-in-time forcing, it is difficult to prevent spu-
rious accumulations of preshocks leading to a � 3. To
avoid such pitfalls, we develop a Lagrangian particle and
shock tracking method [17] which is able to cleanly sepa-
rate smooth parts of the solution and is particularly effec-
tive for identifying preshocks. The main idea of the method
is to consider the evolution of a set of N massless point
particles accelerated by a discrete-in-time approximation
of the forcing with a uniform time step. When two of these
particles intersect, they merge and create a new type of
particle, a shock, characterized by its velocity (half sum
of the right and left velocities of merging particles) and its
amplitude. The particlelike shocks then evolve as ordinary
particles, capture further intersecting particles, and may
merge with other shocks. In order not to run out of particles
too quickly, the initial small region where particles have the
least chance of being subsequently captured is determined
by localization of the global minimizer (see below). The
calculation is then restarted from t � 0 for the same re-
alization of forcing but with a vastly increased number of
particles in that region. This method gives complete con-
trol over shocks and preshocks [18] and allows an accu-
rate determination of the relevant statistical quantity while
keeping a manageable number of degrees of freedom.

Figure 1 shows the PDF of the velocity gradients in
log-log coordinates at negative values for a Gaussian forc-
ing restricted to the first three Fourier modes with equal
variances such that the large-scale turnover time is order
unity. Quantitative information about the value of the ex-
ponent is obtained by measuring the “local scaling expo-
nent,” i.e., the logarithmic derivative of the PDF calculated
here using least-square fits on half-decades. It is seen
that over about five decades, the local exponent is within
less than 1% of the value 27�2 predicted by E et al. [8].
This value of the exponent was also obtained numeri-
cally (with fewer particles) for other large-scale forcing
instances with compactly supported or exponentially de-
creasing spectra and also for non-Gaussian forcing (e.g.,
with Fourier amplitudes having a Bernoulli distribution or
a uniform distribution in an interval). Evidence for non-
clustering of preshocks is obtained by counting the average
number of shock formations per unit time. For the forcing
given above and other large-scale forcing instances with
exponentially decreasing spectra, we found that the typical
mean number of preshocks per turnover time is comparable
to the number of forcing Fourier modes significantly ex-
cited. For such forcings, the density of preshocks is found
to vary by not more than 6% when the time step varies by
2 orders of magnitude around dt � 1024, which is hardly
104501-2
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FIG. 1. PDF of the velocity gradient at negative values in
log-log coordinates obtained by averaging over 20 realizations
and a time interval of 5 units of time (after relaxation of tran-
sients). The simulation involves up to N � 105 particles and
the forcing is applied at discrete times separated by dt � 1024.
Upper inset: local scaling exponent.

consistent with a power-law (and even a logarithmic) di-
vergence as dt ! 0. Furthermore, we have checked that
shocks are always born with vanishing amplitude (within
numerical errors).

Turning now to theoretical results, let us briefly recall
the construction of solutions developed by E et al. [19], in
terms of the dynamical system associated to the character-
istics of (1) in the inviscid limit [20]. The force is assumed
to derive from a Gaussian potential F�x, t�, delta-correlated
in time, periodic of period 1 and analytic in space. A sta-
tistically stationary régime is reached by taking the initial
time at 2`. The central point of the construction is the
following variational characterization of the solution at an
arbitrary time (t � 0 chosen for convenience):

u�x, 0� �
≠

≠x
min
X�?�

(Z 0

2`

∑
1
2

�X2�t� 2 F���X�t�, t���
∏

dt

)
,

(3)

where the minimum is taken over all piecewise smooth
(absolutely continuous) curves X�t� with t [ �2`, 0� such
that X�0� � x. A curve minimizing the action in (3) is
called a minimizer and should be understood as a fluid
particle trajectory. It obviously has to satisfy for all t , 0
the Euler-Lagrange equations:

�X�t� � U�t� , (4)
�U�t� � f���X�t�, t��� . (5)

Except for a finite number of x values, there exists a unique
minimizer [19]. The locations where there are more than
one minimizer correspond to shocks. The minimizers con-
verge exponentially fast backward in time to the trajectory
104501-2



VOLUME 87, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 3 SEPTEMBER 2001
of the unique fluid particle which is never absorbed by a
shock. This trajectory is called the global minimizer be-
cause its action is minimal at any time; it corresponds to
a hyperbolic trajectory of the dynamical system (4) and
(5). Associated to it, there are two curves in the phase
space �x,u�: a stable (attracting) manifold G�s�, and an un-
stable (repulsive) manifold G�u�. The minimizers converge
backward in time to the global minimizer and, thus, the
graph of the solution is made of pieces of the unstable
manifold with jumps at shocks. One of these shocks, called
the main shock, is singled out. It is the unique shock which
has always existed in the past (whereas generic shocks are
born at some finite time t , 0) ; it may be shown that
it corresponds to the position giving rise to the leftmost
and the rightmost minimizers which approach the global
one backward in time. The other shocks cut through the
doublefold loops of the unstable manifold (see Fig. 2). We
observe that their locations can be obtained by a Maxwell
rule applied to those loops. Indeed, the difference of the
two areas defined by cutting such a loop at some position
x is equal to the difference of actions of the two mini-
mizers defined by the upper and lower branches and, thus,
vanishes at the shock location.

We also observe that the structure just outlined has much
in common with that appearing in the unforced Burgers
equation. Indeed when f � 0, the solution to the Burgers
equation can be constructed from the Lagrangian manifold
in the �x, u� plane, defined as the position and the velocity
of fluid particles when ignoring shocks. This manifold is
parametrized by the Lagrangian coordinate a; denoting u0
the initial velocity, we then have simply x � a 1 tu0�a�
and u � u0�a�. The actual solution with shocks is obtained
by applying the standard Maxwell rule to the Lagrangian
manifold. In the forced case, a parametrization of the
unstable manifold (e.g., by the arclength) is now the analog
of the Lagrangian coordinate. But there are two important
differences: first, in the unforced case, the time evolution
of the Lagrangian manifold is explicit and linear while,
in the presence of a force, the Euler-Lagrange equations
(4) and (5) are not, in general, explicitly solvable and the

u x,t(    )

(  )tΓ(u)
global

minimizer

u

x x+

s

1

main
shock

a preshock

FIG. 2. Sketch of the unstable manifold G�u� in the �x, u� plane
at a time t with a preshock occurring. Shock locations are
obtained by applying Maxwell rules to the loops. The velocity
is shown as a bold line.
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unstable manifold has a hyperbolic dynamic. Second, the
smoothness of the Lagrangian manifold in the unforced
case stems directly from the smoothness of the initial data,
whereas in the forced case Pesin’s theory must be used to
show that when the force is indefinitely differentiable in
space, so is the unstable manifold [19].

Using the smoothness of the unstable manifold, we
now formally derive the 27�2 law, by an argument
mostly borrowed from the unforced case [14]. Let G�u� �
����X�s�, U�s����� with s real, be a parametrization of the
unstable manifold at time t � 0. It is assumed for con-
venience that s � 0 corresponds to the global minimizer
and that X0�0� . 0, where primes denote s derivatives.
The velocity is exactly obtained by eliminating from
the unstable manifold the shaded areas determined by
the Maxwell rules and the parts beyond the main shock
(shown as dashed lines in Fig. 2). The surviving set
of parameter values (excluding shocks) is denoted V.
Turning to the statistical description, the PDF of velocity
gradients may be written

p�j� � �d���≠xu�x, 0� 2 j���� . (6)

Because of homogeneity, we can integrate over the space
period and then change from the x variable to the s variable
to obtain

p�j� �
Z 1

0
p�j� dx �

*Z
V

d

µ
U 0

X 0
2 j

∂
X 0 ds

¿
. (7)

Note that since a finite gradient is assumed, x cannot be at a
shock position. Denoting by sk the parameter values where
the argument of the delta function vanishes, we obtain

p�j� �

*X
k

X 02

jU 00 2 jX 00j
d�s 2 sk� ds

+
. (8)

For very large negative values of j, the sk’s must be near
some s�j , corresponding to a local minimum of X 0. Taylor
expansions of X and U in the vicinities of the s�j’s and the
use of the Maxwell rule show that the s�j’s are located in
space-time near preshocks satisfying X 0 � 0 and X 00 � 0
with X 000 . 0 (see Fig. 2). Proceeding as in Ref. [14], we
finally obtain, to leading order

p�j� 	 Cjjj27�2, j ! 2` , (9)

C �
5
p

2
2

øZ
V,X000.0

jX 000j1�2jU 0j5�2d�X 0�d�X 00�ds

¿
.

(10)

Hence, the constant involves the mean of jX 000j1�2jU 0j5�2

at preshocks. Its evaluation requires the knowledge of the
joint probability distribution of X 0, X 00, X 000, and U 0. From
the Euler-Lagrange equations (4) and (5), we observe that
a set of ordinary differential equations with nonlinear sto-
chastic forcing is easily obtained for X, U and the afore-
mentioned four variables. From these equations, using
techniques similar to those developed in Ref. [19] (where a
subset of these stochastic equations is studied), it should be
104501-3
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possible, on the one hand, to make our derivation more rig-
orous (including for the nonclustering of preshocks) and,
on the other hand, to obtain an upper bound for the con-
stant C in the 27�2 law. Note that the expression for C
involves also an integral over the admissible set of parame-
ters V whose determination cannot in general be done by
local analysis with ordinary differential equations. This is
why only an upper bound is expected.

As noted in Ref. [8], the universality with respect to
the forcing of the PDF of large negative velocity gradi-
ents may be extended to negative velocity increments, pro-
vided that they are not significantly influenced by shocks.
Without understanding of all the mechanisms leading to
small-amplitude shocks in the forced case, the issue of uni-
versality for the PDF’s of velocity increments cannot be
settled. A first step would be to determine numerically the
distribution of shock amplitudes. Note that our technique
may also be extended to the case of forcing at scales much
smaller than the size of the system, a problem close to that
considered by Polyakov [3], which is left for future work.
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