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Even-Harmonic Generation due to Beyond-Born-Oppenheimer Dynamics
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We calculate the harmonic spectrum generated by a model HD molecule in a strong laser pulse. The
unequal nuclear masses lead to the emission of even harmonics, i.e., photon frequencies which are even
multiples of the laser frequency. The effect does not occur within the Born-Oppenheimer approximation.
In the high-frequency region, the even harmonics are almost of the same order of magnitude as the odd
ones.
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Atoms and molecules driven by intense laser pulses ra-
diate at frequencies that are integer multiples of the laser
frequency. This so-called harmonic generation [1–4] has
been the subject of numerous experimental and theoretical
studies, mainly because the emission of high-order har-
monics is a promising method to produce coherent x rays
and attosecond pulses: Experimentally, orders up to about
300 have been reported [5,6].

Frequencies other than the usual integer multiples may
be emitted by a single atom or molecule as a consequence
of resonances. However, if a large number of atoms or
molecules is involved in the process, then the coherent part
of the resulting spectrum consists of pure integer multiples
of the fundamental frequency since only these can survive
the propagation through the medium [7], while the others
undergo destructive interference. Additionally, an inco-
herent fluorescence background may be present [2]. Typi-
cally, only odd harmonics are observed in experiment. One
routinely invokes the concept of inversion symmetry to
explain the absence of even harmonics. Intuitively speak-
ing, when an electron in a symmetric potential is driven
by a laser it performs a “symmetric” oscillation consisting
of odd frequency components only [8]. More precisely,
parity is a good quantum number in a system with inversion
symmetry; i.e., the eigenstates of the system have a defined
parity, 11 or 21. In the picture of perturbation theory, the
generation of the nth harmonic proceeds by first absorb-
ing n laser photons of frequency v and then emitting one
photon of frequency nv. The latter process must be a tran-
sition between two states of different parity. Therefore, the
initial absorption cannot involve an even number of pho-
tons. This leads to the fact that in general neither atoms
nor molecules produce even harmonics. One could try to
break the symmetry by choosing heteropolar molecules:
the potential seen by the electrons in such a molecule is not
inversion symmetric if we think of the nuclei as fixed.
However, the full field-free molecular Hamiltonian (in-
cluding all nuclear and electronic coordinates) is always
inversion symmetric so that even-harmonic generation is
still forbidden.
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Violations of the above selection rule have been found
in numerical calculations [9]; they are caused by acciden-
tal degeneracies of Floquet states. It is demonstrated in
Ref. [9] that the even harmonics generated in this way are
a special case of radiation which generally occurs at non-
integer multiples of the fundamental frequency. (As men-
tioned above, such noninteger harmonics can be produced
at the single-molecule level but are not phase matched in
a gas of molecules.)

In an ensemble of oriented diatomic molecules, the in-
version symmetry is broken except in the case of homonu-
clear molecules. In this Letter, we consider an interesting
kind of symmetry breaking which is realized in the HD
molecule: the nuclear masses M1, M2 are different while
the nuclear charges are equal. The HD molecule possesses
a permanent electric dipole moment which has been calcu-
lated previously [10]. As we will show below, the asym-
metry also results in the generation of even harmonics.
In the high-frequency range, their magnitude is compa-
rable to that of the odd harmonics. Note that the potential
seen by the electrons is still symmetric if we use the Born-
Oppenheimer approximation. That is, we are dealing with
even-harmonic generation by non-Born-Oppenheimer dy-
namics. The important implication of this finding is ob-
vious: Nonadiabatic effects play an important role in
high-harmonic generation and can change the emission
spectrum drastically.

For our numerical calculations we use a model of the
HD molecule where the motion of nuclei and electrons
is restricted to the polarization direction of the linearly
polarized laser. The coupling to the laser field E�t� is
treated within the dipole approximation. As a result, the
center-of-mass motion does not couple to the laser field
and can be separated off. We are then left with the internal
degrees of freedom. Placing the origin for the electronic
coordinates z1 and z2 at the nuclear center of mass and
neglecting mass-polarization terms (which, in the chosen
coordinates, occur merely due to the fact that we have more
than one electron), the Hamiltonian reads (atomic units are
used throughout)
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with the dipole operator

D � 2�z1 1 z2� 1 lR . (2)

For the interactions, we choose the soft Coulomb potential
[11]

w�x,y� �
1p

�x 2 y�2 1 1
. (3)

R is the internuclear distance, Mn � M1 1 M2 is the total
nuclear mass, mn � M1M2�Mn and me � Mn��Mn 1 1�
are the reduced masses, and l � �M2 2 M1��Mn is the
mass-asymmetry parameter. The laser field has the form
E�t� � E0f�t� sinvt with peak amplitude E0, envelope
function f�t�, and frequency v. The wave function
C�R, z1, z2, t� is numerically represented on a three-
dimensional grid. After the ground state has been obtained
by propagation in imaginary time, the evolution under the
influence of the laser is calculated by numerical solution of
the time-dependent Schrödinger equation. For the propa-
gation, we use the split-operator method [12]. To our
knowledge, this is the first non-Born-Oppenheimer integra-
tion of the Schrödinger equation for a laser-driven molecu-
lar system with more than one electron.

For an ensemble of molecules, the spectrum of emitted
radiation is approximately (i.e., neglecting incoherent pro-
cesses) proportional to the squared modulus of the Fourier
transform of the dipole acceleration expectation value [13],
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The dipole acceleration expectation value is calculated via
the Ehrenfest theorem:
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In our numerical work we employ a laser with peak in-
tensity 1014 W�cm2 and wavelength 770 nm. The enve-
lope function f�t� is a linear ramp from zero to one during
the first 10 optical cycles. Afterwards, the field amplitude
is held constant. The total time of propagation is 30 optical
cycles.

The harmonic spectrum generated by the model HD
molecule is shown in the upper panel of Fig. 1. The lower
panel contains the spectrum for the H2 model under ex-
actly the same conditions. In both cases, we observe the
familiar rapid decrease of magnitude in the low-frequency
103901-2
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FIG. 1. (a) Harmonic spectrum generated from the model HD
molecule driven by a laser with peak intensity 1014 W�cm2 and
wavelength 770 nm. The plotted quantity is proportional to the
number of emitted photons. (b) Same as panel (a) for the model
H2 molecule.

range (harmonic order lower than 17). Between the 19th
and the 25th orders, the envelope exhibits a local maxi-
mum. It is followed by a plateau extending up to the
45th order. H2 generates only odd harmonics as expected,
whereas HD produces a series of even harmonics through-
out the entire range of observed frequencies. Low even
orders are much weaker than low odd orders, but the dif-
ference becomes less pronounced at very high frequen-
cies. The shapes of the two envelopes are similar at low
frequencies, but on the whole the envelope of the even-
harmonic spectrum is less frequency dependent than the
odd-harmonic envelope. This is in contrast to other mecha-
nisms of symmetry breaking, where even and odd harmon-
ics usually exhibit similar envelope shapes throughout the
spectrum. See, e.g., Ref. [14] for static magnetic fields or
Ref. [15] for static electric fields.

We have found numerically that the HT (hydrogen-
tritium) molecule generates more intense even harmonics
than HD as a consequence of the greater mass asymmetry.
However, the difference is barely visible on the logarith-
mic scale of Fig. 1.

To show that the effect occurs only beyond the
Born-Oppenheimer approximation, we expand the
wave function in Born-Oppenheimer states, C�R, z1,
z2, t� �

P
j c

j
n�R, t�cj

e �R, z1, z2�, where �cj
e �R, z1, z2�� is

an orthonormal set of stationary electronic eigenfunctions.
We insert into the time-dependent Schrödinger equation
i

≠

≠t C � HC, multiply with ck
e �R, z1, z2��, and integrate

over the electronic coordinates to obtain
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where V k are the Born-Oppenheimer potentials and Dkj�R� � �ck
e jDjcj

e �e are the dipole matrix elements. (The subscript
“e” indicates that the integration is over the electronic coordinates only.) Akj and Bkj are the nonadiabatic couplings,
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For HD, the origin of the electronic coordinate sys-
tem is not at the geometric center between the nuclei.
Therefore, the electronic states c

j
e are not eigen-

states of the electronic inversion operator Pe which
acts as �z1 ! 2z1, z2 ! 2z2�. We can, however,
shift the origin to the geometric center, i.e., replace
c

j
e�R, z1, z2� � c̃

j
e �R, z1 2

l

2 R, z2 2
l

2 R� where the shifted
states c̃

j
e are eigenstates of Pe: They have gerade or unger-

ade symmetry because they are the eigenstates of an elec-
tronic Hamiltonian with a symmetric potential. (The c̃

j
e

would be identical with the electronic Born-Oppenheimer
states of the H2 system, if the reduced electronic mass
was not slightly different.) We immediately find that

Dkj�R� � D̃kj�R� � �c̃k
e jD̃jc̃j

e �e , (9)

where D̃ is the shifted dipole operator D̃ � 2�z1 1 z2�.
Since the c̃

j
e are eigenstates of Pe, the dipole operator

couples only states with different eigenvalues of Pe.
Adopting the Born-Oppenheimer approximation means
that the nonadiabatic couplings in Eq. (6) are neglected.
Then, as a consequence of Eq. (9), HD obeys the same
selection rules as H2. Beyond the Born-Oppenheimer
approximation, the situation is different: In the case of
H2, the nonadiabatic couplings Akj and Bkj are zero if the
states k and j have different symmetry, leaving the selec-
tion rules unchanged. In the case of HD, the nonadiabatic
couplings mix all states. [The replacement c

j
e ! c̃

j
e in

Eqs. (7) and (8) would lead to additional terms because
the derivative ≠�≠R acts on the R dependence of the
coordinate shift l

2 R.] Therefore, the selection rules that
prevent even-harmonic generation are violated in the case
of oriented HD.

We have thus found that nonadiabatic effects give rise
to a qualitative difference between H2 and HD, namely
the generation of even harmonics by HD. H2 and HD
obey different selection rules, whereas in the Born-
Oppenheimer approximation, both molecules would obey
identical selection rules and none of them would generate
even harmonics. In the H2 molecule, nonadiabaticity
does not alter the selection rules so that even-harmonic
generation remains forbidden.

The numerical results show that the magnitude of the
even harmonics relative to the odd harmonics is largest
at high harmonic frequencies. We conclude that nonadia-
103901-3
batic effects are particularly important in the high-order
range. The explanation of this behavior lies in the mecha-
nism of high-harmonic generation [16]: The laser field
first ionizes the molecule. The released electron is ac-
celerated by the field and can return to the core where
recombination leads to the emission of a photon. The elec-
tron motion between ionization and recombination can be
understood as the motion of an electron wave packet con-
sisting of continuum states. The Born-Oppenheimer ap-
proximation then breaks down since the vibrational energy
differences are not small compared to the energy differ-
ences between the electronic states. Roughly speaking,
while the electron travels away and back to the core it
does not instantaneously adjust to the potential created by
nuclei.

To summarize, we have shown that nonadiabatic effects
in an oriented and isotopically asymmetric diatomic mole-
cule lead to the emission of even harmonics. They are par-
ticularly intense at high-harmonic frequencies. The strong
influence of nonadiabatic effects is important in the light
of the current efforts to optimize the efficiency of high-
harmonic output. Our results are relevant not only from
a fundamental point of view, but also have the practical
implication that one cannot generally expect to obtain re-
liable harmonic spectra from fixed-nuclei calculations.

This work was supported by the Deutsche
Forschungsgemeinschaft.

[1] A. McPherson et al., J. Opt. Soc. Am. B 4, 595 (1987).
[2] A. L’Huillier, K. J. Schafer, and K. C. Kulander, J. Phys. B

24, 3315 (1991).
[3] M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Prog.

Phys. 60, 389 (1997).
[4] P. Salières, A. L’Huillier, P. Antoine, and M. Lewenstein,

Adv. At. Mol. Opt. Phys. 41, 83 (1999).
[5] Z. Chang et al., Phys. Rev. Lett. 79, 2967 (1997).
[6] M. Schnürer et al., Phys. Rev. Lett. 80, 3236 (1998).
[7] P. Salières, P. Antoine, A. de Bohan, and M. Lewenstein,

Phys. Rev. Lett. 81, 5544 (1998).
[8] We call the electron oscillation symmetric if it has the form

z�t� � 2z�t 1 T�2� where T is the duration of one optical
cycle.

[9] R. Bavli and H. Metiu, Phys. Rev. A 47, 3299 (1993).
[10] W. R. Thorson, J. H. Choi, and S. K. Knudson, Phys. Rev.

A 31, 22 (1985).
103901-3



VOLUME 87, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 3 SEPTEMBER 2001
[11] R. Grobe and J. H. Eberly, Phys. Rev. A 48, 4664 (1993).
[12] M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys.

47, 412 (1982).
[13] B. Sundaram and P. W. Milonni, Phys. Rev. A 41, 6571

(1990).
103901-4
[14] J.-P. Connerade and C. H. Keitel, Phys. Rev. A 53, 2748
(1996).

[15] M.-Q. Bao and A. F. Starace, Phys. Rev. A 53, R3723
(1996).

[16] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
103901-4


