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The dynamics of a trapped Bose-condensed gas at finite temperatures is described by a generalized
Gross-Pitaevskii equation for the condensate order parameter and a semiclassical kinetic equation for
the thermal cloud, solved using N-body simulations. The two components are coupled by mean fields
as well as collisional processes that transfer atoms between the two. We use this scheme to investigate
scissors modes in anisotropic traps as a function of temperature. Frequency shifts and damping rates of
the condensate mode are extracted, and are found to be in good agreement with recent experiments.
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The experimental observation of the scissors mode in a
gaseous Bose-Einstein condensate (BEC) [1] provided a
characteristic signature of superfluidity in this system [2].
The scissors mode is excited by an angular displacement
of the gas relative to an anisotropic confining potential.
Above the BEC transition temperature, Tc, the resulting
oscillation generally consists of the superposition of two
modes, a high-frequency mode which reduces to an irro-
tational quadrupole mode in the limit of an isotropic trap,
and a low-frequency mode which in the same limit corre-
sponds to a pure rotation at zero frequency [2]. In contrast,
a pure condensate exhibits only one oscillation frequency,
indicating the irrotational, and therefore superfluid, nature
of the gas. An important issue in superfluid systems is the
transition between these regimes with increasing tempera-
ture. This question has recently been addressed experi-
mentally for trapped gases [3], stimulating the need for a
consistent theoretical description of the observed behavior.

It is well established that many properties of the con-
densate at very low temperatures can be described by the
Gross-Pitaevskii (GP) equation [4], which is a nonlinear
Schrödinger equation for the condensate wave function,
F�r, t�. The equation treats the condensate as a classical
field and neglects quantum and thermal fluctuations. Con-
sequently, the theory breaks down at higher temperatures
(T . 0.5Tc) where the noncondensed component of the
cloud is significant. Including the thermal component in
a consistent manner is a considerable challenge. Most
calculations, such as those based on the Hartree-Fock-
Bogoliubov equations [5,6], fail to capture the full col-
lective dynamics of the thermal cloud, particularly its
backaction on the condensate.

An approach which allows one to treat the dynamics
of both components simultaneously was developed previ-
ously [7]. The resulting equations of motion reduce to a
generalized GP equation for the condensate
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nc�r, t� � jF�r, t�j2 and ñ�r, t� are the condensate and
noncondensate densities, respectively, and the mean field
acting on the thermal atoms is given by Ueff � V 1

2g�nc 1 ñ�. Apart from mean field effects, Eqs. (1) and
(2) are linked by the non-Hermitian source term, R�r, t�,
which accounts for the transfer of atoms between the
condensate and thermal cloud and is defined in terms of
the C12� f� collision integral by

R�r, t� �
h̄

2nc

Z dp
�2ph̄�3 C12� f� . (3)

In arriving at this set of equations, several approximations
have been made. The use of a contact interatomic interac-
tion, gd�r 2 r0� (g � 4p h̄2a�m, where a is the atomic
s-wave scattering length), is standard. More importantly,
the thermal excitations are treated in the Hartree-Fock ap-
proximation. Furthermore, we invoke the Popov approxi-
mation, where the “anomalous” density m̃ is neglected.
This is in part motivated by physical concerns: inclusion of
m̃ leads to unphysical low-momentum gaps in the energy
spectrum, as well as infrared and ultraviolet divergences.
These inconsistencies can be removed either perturbatively
[8] or through the use of refined kinetic equations [9]. The
latter may provide a possible future extension of our work.

In this paper we apply the above set of equations to
the calculation of the scissors mode in an anisotropic har-
monic trap [V �r� � m�v2

rr2 1 v2
z z

2��2] as a function of
temperature for experimentally relevant parameters. The
GP equation is solved using a fast Fourier transform (FFT)
split-operator method [10], whereas the kinetic equation
is solved by performing a classical simulation [11,12] in
which the thermal phase-space density f�p, r, t� is rep-
resented by an N-body system of discrete particles.
Collisions between atoms are naturally treated in this
representation by Monte Carlo computation of the C22 and
C12 collision integrals. The complete dynamical problem
becomes computationally feasible within this scheme,
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and has the additional advantage of providing an intuitive
physical picture for the thermal gas dynamics. The
damping rates and frequency shifts that we calculate for
the scissors mode are in good agreement with experiment,
indicating that our approach is valid over a wide range of
temperatures. The simulations also yield the quadrupole
response function of the system, which clearly illustrates
the transition between superfluid and rigid-body behavior
with increasing temperature.

Our simulations involve propagation over a sequence of
time steps, Dt. The trajectories of the thermal atoms are
obtained by solving Newton’s equations of motion with
forces defined by the mean field potential Ueff. To en-
sure energy conservation the velocities and positions of the
atoms are updated at each time step using a second-order
simplectic integrator [13]. To define the mean field of a
thermal cloud consisting of discrete particles, we first al-
locate atoms to grid points rjkl using a cloud-in-cell ap-
proach [14], and then convolve this density distribution
with a Gaussian function G�r� � e2r2�h2

. This effectively
is a smoothening procedure, which is equivalent to assum-
ing that interactions involving thermal atoms have a finite
range h. For consistency, the nc term appearing in Ueff is
also convolved.

The Monte Carlo computation of the C22 collision term,
describing collisions between two noncondensed atoms
that both remain in the thermal cloud, was discussed in an
earlier paper [15]. However, the C12 collision term,
which transfers atoms between the two components, was
neglected. We now include this term, but as the method
is somewhat involved we will detail it elsewhere [16].
Briefly, one can write (3) as R � Rin 2 Rout, where Rin

represents collisions between two thermal particles that
lead to absorption of one by the condensate, while Rout

refers to the inverse process. In terms of our Monte Carlo
simulations, one approximates the integrals by a
sum over particles around a grid point: R�rjkl , t� �
�h̄�2nc�

P
i DPi, where DPi � Pin

i 2 Pout
i . The term

Pin
i (Pout

i ) represents the probability that a given thermal
atom with velocity vi will collide during the time step,
leading to a net transfer of particles in (out) of the
condensate. Both probabilities are proportional to nc and
the Bose collision cross section, s � 8pa2. They also
depend upon the local condensate velocity vc and the
phase-space densities of the final thermal states, randomly
selected to satisfy momentum and energy conservation.

In summary, the simulations consist of the following
sequence. In a given time step, the thermal particle phase-
space coordinates are first updated as discussed above. The
probabilities of C12 collisions are next calculated for each
atom. A random number X [ �0, 1� is chosen, and if
X , Pout

i , atoms are added to the thermal cloud, while if
Pout
i , X , Pout

i 1 Pin
i atoms are removed. The quantity

DPi is also accumulated to define the dissipative term in
(1). We then treat the C22 collisions [15]. Finally, the GP
equation is propagated; the dissipative term, R, leads to a
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continuous change in normalization of the wave function
which is consistent with the discrete addition or removal
of particles from the thermal cloud.

Experimentally [1,3] the condensate is produced in a
disk-shaped anisotropic trap (vz �

p
8 vr), which is

adiabatically tilted to make an angle u0 with respect to
its original orientation. The scissors mode is then excited
by suddenly switching the trap to an angle 2u0, so that
the condensate and thermal cloud oscillate about this new
equilibrium position. We simulate this scenario by first
finding the equilibrium condensate and noncondensate
density profiles for a particular temperature T using a
self-consistent semiclassical procedure [15]. A sample of
test particles is then chosen to simulate the phase-space
distribution, where to minimize statistical fluctuations,
10 times the physical number of thermal atoms is used.
Initial particle positions and momenta are randomly se-
lected by a rejection method from a Bose distribution
f�p, r, t� � �z21 exp�bp2�2m� 2 1�21, where b � 1�
kBT and z�r� � exp�2b�Ueff�r� 2 m�	 is the position-
dependent fugacity (m is the condensate chemical poten-
tial). The particle coordinates, as well as the condensate
density, are then rotated through an angle 2u0 about the y
axis relative to the trap potential V�r�.

Starting with these initial conditions, quadrupole mo-
ments can be calculated separately for the condensate
[Qc�t� �

R
dr xznc] and thermal cloud [Q̃�t� �P

Ñ
i�1xizi]. To make contact with experiment we define a

rotation angle for each component, ua�t� � Qa�t��Q0
a ,

where Q0
a � 
x2 2 z2�0

a is the equilibrium quadrupole
moment of the ath component [17]. For a pure con-
densate (T � 0� consisting of N � 2 3 104 atoms, the
quadrupole moment is found to oscillate with almost con-
stant amplitude (where small fluctuations arise from weak
excitation of other condensate modes) at a single fre-
quency of vsc � 2.9886vr, which is about 1.5% larger
than the Thomas-Fermi (TF) result vsc � �v2

r 1 v2
z �1�2

[2] due to finite number effects. Above Tc the Bose gas
oscillation exhibits two frequencies with approximately
equal amplitudes. Our simulations yield frequencies that
are very close to those found experimentally and predicted
analytically: v6 � jvr 6 vz j. In addition, the thermal
cloud oscillation is weakly damped by C22 collisions, over
a time scale which is similar for both modes and is of the
order of several collision times.

Below Tc, our simulations describe the dynamics of both
components. For most temperatures we find that the con-
densate and thermal cloud modes are essentially excited
independently, indicating that the two components are
only weakly coupled. Nevertheless, the condensate oscil-
lation experiences significant damping from interactions
with the thermal component. To quantify the damping
rate and frequency of the condensate mode, the data are
fit to a single exponentially decaying sinusoidal function
in order to make contact with the experimental analysis
[3]. Figure 1 shows results for the condensate mode as a
100404-2
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FIG. 1. Frequency (a) and damping rate (b) of the condensate
scissors mode as a function of temperature for N � 5 3 104

total particles. The temperature is normalized by the transition
temperature of the ideal gas, T 0

c . Each plot shows results ob-
tained by solving Eq. (2): (i) excluding collisions, C12 � C22 �
0, (�); (ii) with C12 � 0 but C22 fi 0 (≤); and (iii) with all col-
lisional processes included (±).

function of temperature, for a fixed total number of atoms,
N � 5 3 104. To separate the effects of each term in the
Boltzmann equation (2) on the dynamics, simulations are
performed with no collisions, with only C22 collisions, and
with both C12 and C22. At low temperatures (T , 0.6T0

c )
we see that the damping is predominately due to colli-
sionless Landau damping, where mean field interactions
between the condensate and thermal atoms transfer
energy from the collective mode to single particle excita-
tions. When C22 collisions are included, an increase in
damping is observed. These collisions can only affect the
condensate indirectly through their equilibrating effect on
the nonequilibrium distribution of thermal atoms. The
C12 term leads to additional damping at low T by further
promoting the equilibration of the condensate and thermal
cloud. This source of damping is comparable in magni-
tude to that of the C22 collisions but is small compared
to Landau damping, in agreement with a previous study
of collective modes under the assumption of a static
thermal cloud [18]. The effect of C12 collisions is also
evident as a decrease in the condensate number with time,
which occurs since the gas equilibrates to a higher final
temperature due to the excess energy stored in the initial
nonequilibrium state.

At higher temperatures (T . 0.6T0
c ), collisional effects

increase in importance, but the situation becomes more
complicated as T 0

c is approached. The more massive ther-
mal cloud begins to drive the condensate at its own scissors
mode frequencies, and as a result, a single damped sinu-
100404-3
soid is a poor fit to the theoretical data in this regime.
Effectively, the condensate oscillations are sustained over
longer times and the damping appears to saturate.

There are also observable effects on the condensate
mode frequency. In the collisionless limit, we see from
Fig. 1(a) that the frequency at first increases with increas-
ing temperature as a result of the decreasing number of
condensate atoms (i.e., the frequency shifts away from the
TF limit). This trend is reversed by collisions, as well as at
higher temperatures where the thermal cloud becomes sig-
nificant. Since the condensate tends to drag part of the ther-
mal cloud along with it, its effective inertia is increased.
One would therefore expect a lowering of its normal mode
frequency, as observed.

Use of evaporative cooling in the actual experiments [3]
meant that the total number of atoms varied with tempera-
ture from N � 2 3 104 at low T to N � 105 close to T 0

c .
Since a small but significant dependence on the number is
found in our full simulations, we have taken this variation
into account in our comparison with experiment. Our re-
sults in Fig. 2 are in very good agreement with experiment
for T , 0.8T0

c but deviate from experiment in both fre-
quency and damping at the three highest temperatures.
However the experimental error bars are particularly large
for these points, which may reflect difficulties in extracting
values of the damping rate and frequency from fits to the
data over a limited time scale. We note that three damped
sinusoids are needed to fit the theoretical data in this re-
gime, as the condensate is strongly coupled to the thermal

FIG. 2. Frequency (a) and damping rate (b) of the scissors
modes for a variable total number of atoms, intended to simu-
late experiment [3]. The condensate mode is indicated by open
(theory) and solid (experiment) circles. The open squares in (b)
show the calculated average damping rate of the two thermal
cloud modes, while the solid squares are the corresponding ex-
perimental values.
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cloud. In addition, we do not see a condensate at the high-
est temperature point (T � T 0

c ), which may indicate sys-
tematic errors in the experimental temperature scale or
possibly limitations of the semiclassical approximation.

A quantity of considerable interest is the quadrupole
response function x00�v�, which physically describes the
energy absorption of each mode under a harmonic pertur-
bation. Zambelli and Stringari [17] demonstrated that this
can be related to the moment of inertia of the system, Q,
by the expression

Q

Qrigid
� �v2

z 2 v2
r�2

R
dv x 00�v��v3R
dv x 00�v�v

, (4)

where Qrigid is the moment of inertia of the correspond-
ing rigid body. For a sudden rotation of the trap, x 00�v� ~

vRe�Q�v�	, where Q�v� is the Fourier transform of the
time-dependent quadrupole moment. We extract this quan-
tity by fitting three damped sinusoids to the calculated
total quadrupole moment. Figure 3 shows results as a
function of temperature. At lower temperatures, the con-
densate mode is dominant and x 00�v� exhibits a single
peak. For very low T the thermal cloud is in fact strongly
coupled to the condensate, and oscillates at the condensate
frequency with a small phase shift that accounts for con-
densate damping. However, as the temperature is raised,
the strength of the condensate mode diminishes, and the
spectral density is dominated by the two thermal cloud
modes at v6, as would be expected for Q � Qrigid [17].
In contrast, the small T behavior is consistent with a su-
perfluid moment of inertia, Qsf , Qrigid. In principle, one
could calculate the moment of inertia over the entire tem-
perature range using (4). However, the damped nature of
the modes leads to Lorentzian spectral densities for which
the required frequency moments are undefined. Neverthe-
less, one can see qualitatively that Qsf , Q , Qrigid in
the intermediate region.

To summarize, we have simulated the scissors modes in
a finite-temperature Bose gas using a coupled FFT/Monte

FIG. 3. Quadrupole response function x 00�v� for the system,
as a function of frequency and temperature. The parameters
match those in Fig. 2.
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Carlo scheme. Our approach takes into account fully the
dynamical mean fields acting between the condensate and
thermal cloud as well as all collisional processes that are
physically relevant. We find very good agreement with
experiment over a wide range of temperatures, with only
minor discrepancies near to T0

c where both theory and ex-
periment are more difficult to analyze quantitatively. These
same methods can be used to study other collective modes,
as well as problems such as condensate growth.
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