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Droplet Growth by Coalescence in Binary Fluid Mixtures
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The evolution of the drop-size distribution in immiscible fluid mixtures following well-specified shear
histories is investigated by in situ microscopy, allowing determination of the shear-induced coalescence
efficiency ´. At small capillary number Ca, ´ is constant, whereas at larger values of Ca, ´ decreases,
in agreement with theory accounting for slight deformation of the drops in close approach. Coalescence
causes the drop-size distribution to broaden in general, but greater deformation of the larger drops at
high shear rates causes the drop-size distribution to remain narrow.
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The properties of immiscible fluids (e.g., the texture of
foods and the mechanical properties of polymer blends)
depend strongly on the size of the dispersed phase. Usu-
ally the desired size is much smaller than the equilibrium
size, so that small drops grow with time, primarily by co-
alescence, which requires the movement of drops toward
one another. Although drop motion can occur by various
means, an applied shear strain in the present experiments
overwhelms both Brownian motion [1] and buoyancy [2,3]
as the source of collisions.

A theoretical description of shear-induced (or ortho-
kinetic) coalescence was first developed by Smoluchowski
[4]. Neglecting droplet interactions, the frequency of
droplet collisions and the concomitant growth of size can
be calculated easily. Assuming that the drops are of equal
radius a,

d�ln�a���dg � f�4�p� �2 2 22�3�´ , (1)

where f is the local volume fraction of the dispersed phase
and g is the shear strain. ´ represents the coalescence
efficiency, a correction to the original theory [5]. When ´
is constant, the drop size grows exponentially with shear
strain. Determination of ´ is then simple, being derived
directly from the slope of ln�a� vs g [6–8].

Recent predictions of ´ take into account droplet inter-
actions. In particular, the trajectory analyses [9,10] used
to compare the present experiments with theory follow the
motion of pairs of drops by accounting for hydrodynamic
interactions and van der Waals attractions. Coalescence is
assumed when the attraction pulls the surfaces of the two
drops into contact so that film rupture occurs. When the
shear flow causes the drops to become close altogether,
the pressure that builds up in the lubrication film between
the drops causes their interfaces to become flattened or
dimpled in the region of near contact. When attractions
become dominant before flattening (i.e., for very small val-
ues of the ratio Ca�d, where Ca is the capillary number,
0031-9007�01�87(9)�098304(4)$15.00
and d is the dimensionless Hamaker parameter [11]), ´

is essentially that of spherical drops [9]. (Ca � ahc �g�s,
where �g is the shear rate, s is the interfacial tension, and
d represents the ratio of attractive van der Waals forces
to lubrication forces.) In this limit, ´ depends primarily
on the viscosity ratio ( p � hd�hc) and the size ratio for
a pair of drops (k � a1�a2, defined to be less than or equal
to 1), and only weakly on attractive molecular forces. On
the other hand, when flattening occurs before the inter-
faces are sufficiently close that attractions become impor-
tant (i.e., for larger Ca�d), ´ is much lower than that of
spherical drops, due to the slow film draining process [10].

In this Letter, we investigate the orthokinetic coalescence
efficiency as a function of shear rate and temperature,
and we compare drop-size distributions as a function of
the degree of drop deformation. The two fluids used in
this study are poly(ethylene glycol), PEG (the continu-
ous phase), and poly(propylene glycol) PPG, the droplet
phase. Their number-average molecular weights are Mn �
10 000 and 12 200, respectively. The polydispersity of
molecular weight for each is approximately Mw�Mn �
1.1, where Mw is the mass-averaged molecular weight, as
determined by MALDI mass spectroscopy. Their individ-
ual viscosities (Table I) were measured using a Carrimed
cone-and-plate rheometer and found to be Newtonian up
to shear rates of at least 800 s21. The interfacial ten-
sion between the two fluids (Table I) was measured by the
droplet retraction technique [12] at temperatures of 75, 90,
and 125 ±C; isolated drops having a diameter ranging from

TABLE I. PEG viscosity, PPG viscosity, and interfacial tension.

T �±C� hc , PEG (Pa s) hd , PPG (Pa s) s (mN�m)

75 4.2 0.71 3.5
90 2.5 0.50 3.0

125 1.2a 0.24a 2.3

aExtrapolated based on an Arrhenius fit.
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200 to 280 mm were investigated using a gap spacing of
500 mm. Ring tensiometry [13] was also performed, yield-
ing similar results. Because of the chemical similarity of
PEG and PPG, s is relatively small, and any impurities
are not likely to be surface active. Thus, this blend is ap-
propriate for comparison with theories for binary fluids.
Mixtures containing surfactants are also being studied [8].

Mixtures were examined with monochromatic light by
bright-field or phase-contrast optical microscopy using a
Linkam Scientific Instruments CSS-450 heated shearing
cell mounted on an Olympus microscope equipped with a
203 long-working-distance objective and a (640 3 680
pixel) CCD camera. The image magnification (0.811 mm�
pixel) was determined using a calibrated ruling. The shear
cell has a parallel-plate geometry, in which one quartz
disk is rotated relative to another. The smaller disk has
a radius of 15 mm, and the observation window is situated
at a radius of 7.5 mm, so that the shear field is relatively
uniform (i.e., 63%) throughout the 0.52 mm wide field of
view. All shear rates are reported at the location of the
center of the window.

Coalescence experiments were carried out at gap spac-
ings of 50, 100, and 200 mm, and at temperatures of 75,
90, and 125 6 0.1 ±C. The mixture was first sheared at
a high rate (e.g., 400 s21) to produce a relatively narrow
distribution of small drops. Even at these rates, the Rey-
nolds number Re � r �g4h2�hc (r � density, h � half
gap spacing) is small (�3 3 1023), so that Stokes flow can
be assumed. After more than 1 min of preshear, the shear
rate was decreased abruptly. In some instances, the bulk
fluid drifted slightly for a few seconds following the step
down. When this drift occurred, the system was observed
carefully to ensure that no significant coalescence took
place during this time.

A series of images was recorded during shear at regular
intervals of strain. The beginning of the series was timed
such that the first one or two images were during rapid
shear, so that the beginning of slow shear could be deter-
mined. The drop-size distribution was measured from the
images with an image analysis routine using the Danielson
or circles operator [14], which fits a binary thresholded im-
age with circular domains (Fig. 1). During slow shear, Ca
is small enough (,0.1) that the drops are nearly spherical

FIG. 1. A cropped portion of an (a) original bright-field and
(b) processed image. The circles operator is able to resolve
partially overlapped drops, as shown.
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(Fig. 1). Mixtures having up to 10% dispersed phase could
be investigated quantitatively, and number and volume av-
erage drop radii were calculated:
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The total number of drops counted per image is approxi-
mately 500 to 3000. When the distribution of drop sizes is
broad (as in Fig. 1), the value of ay is more reliable than
an, because analysis of the larger drops is more accurate.

Because the gap spacing is narrow, wall effects are sig-
nificant and are treated as follows. When a fluid mixture
is sheared, drops migrate away from a wall with a velocity
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where y1 is the distance from the wall [15]. Moreover,
droplet collisions induce random displacements parallel
to the shear gradient, giving rise to a shear-induced self-
diffusion coefficient:

Dself � f �ga2fy , (4)

where fy is a coefficient that depends on Ca and p [16].
The diffusivity in a concentration gradient is larger than
the self-diffusivity [17], and we use D � 2Dself . At steady
state, fluxes associated with these phenomena balance and
the following volume fraction profile [18] is obtained:
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FIG. 2. The steady-state local volume fraction profile resulting
from the balance of shear-induced diffusion and wall migration.
The curve is calculated from Eq. (5) for the following experi-
mental conditions: 	f
 � 0.022, R � 6.0 mm, h � 50 mm,
Ca � 0.40, and p � 0.2 ( fy � 0.05, as determined from
Ref. [16]), and the symbols represent experimental data. The
mixture was sheared at 90 ±C, first at 2 s21 for 2 min to produce
large drops and then at 80 s21 for 11 min to achieve a narrow
distribution of drops having a radius of 6.0 mm (Ca � 0.40,
see Table I). The local concentration f was assumed to be pro-
portional to the number of drops, which was determined immedi-
ately after cessation of flow by adjusting the plane of focus at
eight different positions within the gap and counting the number
of drops in focus at each position y0.
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TABLE II. Effective volume fractions for experimentsa re-
ported in Fig. 3.

2h �mm� 	f
 feff

100 0.022 0.046
50 0.044 0.089
50 0.055 0.105

100 0.055 0.090
200 0.055 0.079

50 0.110 0.176

aCa � 0.5, p � 0.2, fy � 0.05 (see Ref. [16]), and a � 1.7 mm.

consistent with experimental data (Fig. 2). Since the vol-
ume fraction must be positive or zero, f� y0� is set to 0 if
the above expression gives a negative value (i.e., near the
wall). f0 is an integration constant determined by conser-
vation of the total volume fraction, and y0 � y�h, where
y � 0 is the center plane of the cell and the bounding walls
are at y � 6h. Thus the local concentration f of drops is
greater near the center of the gap, causing coalescence to
be more rapid in that region. Note that 3D behavior is pre-
served, because the drops are small compared to the width
of the concentrated region.

For the experiments reported here, wall migration and
shear-induced diffusion are only significant during the

FIG. 3. Growth of the volume averaged drop diameter with
increasing dimensionless time for mixtures of PPG in PEG at
90 ±C. The curves represent a fit by a trajectory theory for
deformable drops [10] with shear rates of 2, 5, 10, 20, and 50 s21

from top to bottom, while the straight line is the prediction for
spherical drops [9]. The data for 10 s21 are for each of the
experimental conditions (gap spacing and drop concentrations,
and effective concentration) listed in Table II. For the other
shear rates, two data sets are shown.
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rapid preshear period. After a step down in rate, the shear
rate and Ca are so small that both wall migration and
shear-induced diffusion are insignificant. Therefore the
volume fraction profile is essentially static but nonuniform
during the coalescence period [18]. To understand the
effect of this spatial distribution of drops, we recall that
coalescence of moderately dilute suspensions involves col-
lisions between pairs of drops, and that the collision fre-
quency per unit volume is proportional to f2. Therefore,
integrating Eq. (1) weighted by the local concentration f,
the effective concentration to leading order is

feff �
	f2

	f


. (6)

Table II lists values of feff appropriate to experiments
reported here. The ratio feff�	f
 is a significant factor
not considered in our earlier work [8], so that the values
of ´ reported then were higher than expected.

Growth of the volume averaged drop diameter Dy �
2ay as a function of increasing dimensionless time �gtfeff
is plotted in Fig. 3 for several shear rates, gap spacings,
and dispersed phase volume fractions. For each shear rate,
´ is initially constant, with a value of 0.56 (Fig. 3), and
Dy grows exponentially as predicted by Eq. (1), suggest-
ing that the effect of drop deformation is negligible for

FIG. 4. Dimensionless drop-size distribution at different
dimensionless times for the data of Fig. 3 at a shear rate of
(a) 2 s21 and (b) 20 s21. The stepped histograms are the
measured distributions, and the solid curves are the predicted
distributions from Ref. [10].
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FIG. 5. Evolution of the drop-size polydispersity index ay�an
for shear rates of 2, 5, 10, 20, and 50 s21 from top to bottom.

small drops. This result agrees quantitatively with the pre-
dicted value [9] of ´ � 0.56 for spherical drops, p � 0.2,
and k � 1. Indeed, we expect the experimental value of ´

to be dominated by that for equal-sized drops (i.e., k � 1),
since the volume average biases the largest drops, and the
most significant growth is caused by collisions with drops
of equal size. Even so, theoretical values [9] of ´ do not de-
crease significantly until k is much less than unity (i.e., less
than 0.5): e.g., ´�k � 0.7� � 0.55, ´�k � 0.5� � 0.48,
and ´�k � 0.3� � 0.36. Since the viscosity ratio is es-
sentially independent of temperature, ´ for spherical drops
is the same at each of the temperatures studied.

After the drops achieve a certain size, which is smaller
for faster shear rates, ´ sharply decreases due to a slow
film-drainage process [10,19], and the growth curve bends
over, consistent with drops being deformed at the point
of their apparent contact. The curved lines (Fig. 3) are
generated from Rother and Davis’ theory [10] using the
Hamaker parameter (A � 10219 J) as the single fitting pa-
rameter. This value of the Hamaker constant is reasonable,
though perhaps in the upper end of the range of expected
values [20].

Drop deformation is influenced by temperature, because
of changes in viscosity and interfacial tension. The change
in viscosity is more significant (Table I), so that the onset
of drop deformation (and the sharp reduction in ´) occurs
at smaller drop size when the temperature is lower.

The reduction in ´ for large-sized drops also has a sig-
nificant influence on the drop-size distribution. When the
drops are small enough that they remain spherical, coales-
cence is most likely between drops of similar size [9], and
the distribution broadens significantly [21], as observed es-
pecially at the lower shear rates for which deformation is
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less important (Fig. 4a). At high shear rates (Fig. 4b), drop
growth is less, and the size distribution does not broaden as
much, because of the reduction in ´ especially of the large
drops due to small deformation and film drainage in the
near-contact region [10]. Good agreement between theory
and experiment is observed. Additional data demonstrat-
ing that much narrower distributions are achieved at higher
shear rates are provided in Fig. 5 as a plot of the drop-size
polydispersity index versus strain.
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