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We demonstrate a novel method of introducing point defects (mono- and divacancies) in a confined
monolayer colloidal crystal by manipulating individual particles with optical tweezers. Digital video
microscopy is used to study defect dynamics in real space and time. We verify the numerical predictions
that the stable configurations of the defects have reduced symmetry compared to the triangular lattice
and discover that in addition they are characterized by distinct topological arrangements of the particles
in the defect core. Surprisingly, point defects are thermally excited into separated dislocations, from
which we extract the dislocation pair potential.
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Colloidal crystals [1], ordered self-assembled structures
of (sub)micron spheres, provide a model system for the
study of basic problems in condensed matter physics. In
particular, confined colloidal crystals have been used to ex-
plore statistical physics in two dimensions [2,3]. Although
colloids in 2D have been studied for the last 20 years, sev-
eral areas still remain relatively unexplored. The simplest
structural defects in a crystal, namely vacancies and in-
terstitials, fall in this category. Point defects are of con-
siderable interest, since they play a dominant role in real
materials’ properties. Also, they are predicted to prolifer-
ate in more exotic systems, such as the ground state of
a Wigner crystal [4] or the supersolid phase [5] of the
Abrikosov lattice in type-II superconductors.

Colloidal crystals also offer new approaches in synthe-
sizing materials with novel properties and applications like
photonic-band-gap materials [6], optical switches [7], and
chemical sensors [8]. Understanding the behavior of de-
fects in colloidal crystals and inventing techniques for ma-
nipulating their dynamics can have an immediate impact
on the fabrication of nanostructured materials.

In this work we demonstrate the use of optical tweez-
ers [9], a powerful tool that has promoted research in a
wide range of fields, to artificially introduce isolated point
defects in otherwise structurally perfect two-dimensional
colloidal crystals. For the first time, such defects are stud-
ied by video microscopy in real space and time, providing
new insight into their microscopic dynamics. In this Letter
the energetics of the defects are discussed. Results on the
diffusion of the defects are presented in a separate publi-
cation [10].

The experimental setup is shown in Fig. 1. The col-
loidal crystals were prepared with a �1% volume aqueous
suspension of 0.360 mm diameter negatively charged
polystyrene-sulfate microspheres (Duke Scientific
No. 5036, polydispersity �1%). The suspension was
completely deionized by flushing through ion exchange
resin [11], and conductivity measurements [12] give an
estimated screening length k21 � 390 nm, originating
0031-9007�01�87(9)�098303(4)$15.00
mainly from the cloud of �2000 H1 counterions around
each sphere [13,14]. Under these conditions the particles
crystallize due to strong electrostatic interaction. Con-
fining the suspension between two fused silica substrates
separated by �2 mm suppresses the vertical motion
of the spheres by negative charge that develops at the
silica-water interface and creates a single layer colloidal
crystal with a lattice constant a � 1.1 mm [15].

Trapping a particle with optical tweezers and dragging it
from its lattice site creates isolated point defects in an oth-
erwise perfect two-dimensional crystal [16]. The optical

FIG. 1. (Left) Experimental setup (not to scale): The sample
cell consists of a 1/2 in. diameter quartz disk (Q) and a quartz
coverslip (CS) glued together. The distance between the two sur-
faces was controlled by a patterned thin (�2 mm) polymer film
(S) (Dow Chemical Co., CYCLOTENE), which served both as a
spacer and as an adhesive. The cell was connected to an external
circulation circuit [11] containing a few ml of suspension, driven
by a peristaltic pump (P) (VWR) and including a conductivity
meter (M) (VWR, model 1054, flow-through cell) and a col-
umn with mixed-bed ion-exchange resin (IEX) [BIO-RAD, AG
501-X8(D)]. (C) Indicates a 0.5 mm circulation channel in con-
tact with the two-dimensional region and (T) a particle trapped
with the optical tweezers. (Right) Micrograph of an isolated
divacancy in a two-dimensional colloidal crystal. The 4 3 4
diamond in the enlarged central region contains four particles in
the perfect lattice but only two when it encloses the core of the
divacancy.
© 2001 The American Physical Society 098303-1
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tweezers were formed by focusing a beam of an Ar1

laser (Coherent INNOVA 90, l � 514 nm) through the
same objective (Zeiss Plan Neofluar, 1003, oil immer-
sion, NA � 1.3) used for imaging. The position of the
beam was controlled by a set of mirrors mounted on an XY
galvanometer scanner set (Cambridge Technology). Point
defects are created by dragging a particle away from its
lattice point at about 50 mm�sec, making it an interstitial
and leaving a vacant site behind. To overcome the restoring
force from the crystal and to be able to drag the particle
faster than the relaxation time of the lattice, 100 mW of
laser power (�50 mW going through the objective lens)
was used.

The dynamics of such single, isolated point defects
were studied in real time under 1003 magnification and
recorded on videotape (Sony SVO-9500MD recorder) us-
ing a monochrome CCD video-camera (Sony SSC-M370).
The field of view covers �50 3 40�a2. Typically, we
processed 60 frames�sec and tracked a single defect for
20–40 sec, which is the time it takes to diffuse away from
the field of view. Each individual frame was acquired on a
PC and processed using a particle-tracking algorithm [17].
The raw data consists of the positions of the particles in
every frame which are linked into trajectories in time.

Real-space imaging facilitates detailed study of the
structure of the defect core. The following question natu-
rally arises: what are the possible configurations in which a
defect can exist? In the case of strong interactions, ka #

5.9, where k21 is the screening length, numerical studies
[5,18] of monovacancies and interstitials have revealed that
the system spontaneously deforms into configurations with
lower symmetry than that of the lattice. This prediction
is verified for our system, where ka � 3 (Figs. 2A–2D).
For divacancies, various stable configurations with well
defined symmetry can also be identified (Figs. 2E–2H).

The interactions in the system are short ranged [screened
Coulomb, V �r� ~ exp�2kr��r], therefore the nearest
neighbor bonds have geometrical as well as physical
significance. The creation of a point defect involves the
breaking of bonds and creation of miscoordinated particles
in the core region. The configuration of the defects can be
characterized by the arrangement of these broken bonds
and miscoordinated particles. We analyzed the topological
structure of the defects by performing a geometrical
triangulation of the positions of the particles, finding the
pairs of nearest neighbors, and measuring the coordination
number ni for every particle. Our observations indicate
that the following constraints are satisfied: (i) the misco-
ordinated particles are never observed isolated but rather
appear as distinguishable pairs, triplets, etc., of nearest
neighbors, (ii) the mean coordination number of every
pair, triplet, etc., is always equal to six, and (iii) we can
define vectors �nij starting from a particle i with ni , 6
and terminating to a nearest neighbor j with nj . 6. The
number of vectors originating from i is 6 2 ni and the
number of vectors terminating on j is nj 2 6. For every
configuration,

P
�ij� �nij � 0.
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FIG. 2. Configurations of monovacancy: (A) split �SV�,
(B) threefold symmetric �V3�, (C),(D) twofold crushed
�V2a , V2b�. Nomenclature adopted from [18]. Top left insets in
every figure show configuration of the vectors �nij defined in the
text. The grey dots show the arrangement of miscoordinated
particles in the core of the defect. The relative free energies
of the different configurations were estimated to be (in kBT ):
FSV � 0.86, FV3 � 1.10, FV2a1V2b � 1.41. Configurations of
divacancy: (E),(F) split �SDa,b�, (G) twofold crushed �D2�,
(H) threefold symmetric �D3�. Free energies in kBT are
FD2 � 0.7, FSDa1SDb � 1.1, and FD3 � 2.1.

The finite temperature causes the system to vibrate
around every local energy minimum C, exploring the
volume of phase space VC in which the energy is O�kBT�
above the minimum energy EC , and occasionally getting
enough energy to jump to a nearby local minimum. The
contribution to the entropy of every configuration is
roughly SC � k log�VC�, and the different configurations
occur with relative probabilities PC ~ exp�2FC�kBT�,
where FC � EC 2 TSC is the free energy of a configu-
ration. As long as the system remains around a local
energy minimum, the distortions of the lattice are elastic
and the topological arrangement of the particles does not
change. Therefore, every energy minimum has not only
a characteristic symmetry but also a certain topological
configuration of the defect core. Using the topology
rather than the symmetry as a criterion for identifying
the different configurations C, we measure their relative
occurrence probabilities PC. The free energy differences,
estimated from the measured PC’s, are found to be of
order 0.1–1 kBT .
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Point defects are “topologically neutral” since they have
zero Burgers vector. However, one could think of creating
a point defect by inserting extra rows of particles that do
not terminate on each other. The extra inserted rows are
edge dislocations whose Burgers vectors add up to zero.
Therefore, a point defect contains embryonic pairs, triplets,
etc., of dislocations, in the same way that a dislocation
contains an embryonic pair of a sevenfold and a fivefold
disclination [19]. Since the system is at finite temperature,
one would expect the defect to fluctuate between these
possible configurations of dislocations.

The signature of an isolated edge dislocation in a two-
dimensional hexagonal lattice is a core with a pair of
neighbor fivefold and sevenfold coordinated particles. The
extra row of particles terminates on the fivefold particle.
The Burgers vector �b � �a is in one-to-one correspondence
with the vector �nij defined earlier in the text. �b con-
nects the fivefold coordinated particle with its first near-
est neighbor, moving counterclockwise after the sevenfold
neighbor (see Fig. 3). Since �b $ �nij and

P
�ij� �nij � 0,

one can view the various configurations of the defect asP �b � 0 dislocation multipoles. Tracking the time evo-
lution of the system, we see that the vast majority of the
observed configurations correspond to a dislocation pair or
a triplet, with infrequent appearance of higher order mul-
tipoles. Most of the time the dislocations comprising the
defect are closely bound in the configurations previously
identified (Fig. 2). Occasionally, however, configurations
are observed in which the dislocations appear to dissoci-
ate and recombine (Fig. 3). This fits well with a picture
in which the dislocations are considered point particles
with opposite topological charge (Burgers vector) interact-
ing with an attractive potential.

Focusing on the case in which the point defects ap-
pear as a dislocation pair and assuming an interaction
V� �r� between the two dislocations, we would expect
Boltzmann statistics for the probability of observing
the two dislocations a certain distance apart, namely,
P��r� ~ exp	2V � �r��kBT
. In addition, particle conserva-
tion dictates that dislocations can only glide parallel to
their Burgers vector, so �r � �rc 1 �rg, with �rc � 3 �a�2 �a�
for di(mono)vacancy and �rg k �b. We measured P�r�,
r � j �rj, for the mono- and divacancies, using a few
thousand snapshots of the system. The separation r of the
two dislocations is identified as the separation between the
two fivefold coordinated particles where the extra rows
of particles terminate. Our results (Fig. 4) show a rather
rapid decrease in P�r� as r goes beyond a couple of lattice
constants, together with a modulation, more clearly seen
in the case of the divacancy. Since V �r� ~ 2 logP�r�, the
interaction of the two dislocations turns out to increase
with r, with an average slope �2.9 6 0.4�kBT�a and
�2.0 6 0.2�kBT�a for the case of mono- and divacancy,
respectively. The modulation is due to a Peierls energy
barrier [20] that comes from the discreteness of the lattice.
A final point is that the core region of dislocations has a
typical size of a few a. Therefore, our measurements of
098303-3
FIG. 3. Point defects as dislocation multipoles: (A) Well-
defined divacancy configuration. A Burgers circuit (solid line)
fails to close if it crosses the core of the defect. A Burgers cir-
cuit that surrounds the defect core without crossing it (dashed
line) closes as expected. The arrows indicate the Burgers vectors
of the “embryonic” dislocation dipole. (B) Configuration of the
same divacancy about 2 sec later. The divacancy is not well de-
fined any more and the system resembles a pair of dislocations
with opposite Burgers vectors, whose gliding lines (dotted lines)
are separated by �3 �a. When those two dislocations come close
to each other, the original divacancy is recovered.

V�r� are in a regime where the cores of the two disloca-
tions overlap and linear elasticity theory is not applicable.

In summary, we have demonstrated a novel way of in-
troducing point defects in colloidal crystals through ma-
nipulation of individual particles with optical tweezers.
Using digital video microscopy, we observed that the stable
configurations of the defects have reduced symmetry com-
pared to the triangular lattice and identified distinct topo-
logical features in the arrangement of the system in every
configuration. This analysis demonstrates that topologi-
cally the point defects correspond to dislocation multipoles
with zero total Burgers vector. The individual dislocations
098303-3
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FIG. 4. Pair interaction between dislocations, divacancies (top)
and monovacancies (bottom). P�r� was determined from a few
thousand snapshots of the system by measuring the distribution
of the separation of the two fivefold coordinated particles found.
Insets: V�r��kBT was estimated from 2 logP�r�. The solid
curves are spline fits and the straight lines are linear fits to the
particular regions of data.

are bound by an attractive interaction. Divacancies in par-
ticular are observed to dissociate into two dislocations that
can separate several lattice spacings before recombination.
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