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Even-Odd Behavior of Conductance in Monatomic Sodium Wires

H.-S. Sim,1,2 H.-W. Lee,3 and K. J. Chang1,3

1Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
2Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany

3School of Physics, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea
(Received 7 December 2000; published 14 August 2001)

With the aid of the Friedel sum rule, we perform first-principles calculations of conductances through
monatomic Na wires, taking into account the sharp tip geometry and discrete atomic structure of elec-
trodes. We find that conductances �G� depend on the number �L� of atoms in the wires; G is G0�� 2e2�h�
for odd L, independent of the wire geometry, while G is generally smaller than G0 and sensitive to the wire
structure for even L. This even-odd behavior is attributed to the charge neutrality and resonant character
due to the sharp tip structure. We suggest that similar even-odd behavior may appear in other monovalent
atomic wires.
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Atomic contacts have been generated by scanning
tunneling microscopes or mechanically controllable break
junctions [1]. It has been demonstrated that single atom
contacts made of monovalent atoms such as Na, K, and Au
have a strong tendency towards the quantized conductance
G0 �� 2e2�h�. To explain the quantization, a ballistic
transport model has been suggested [2], where atomic
contacts are modeled by jellium constrictions, which are
adiabatically connected to electrodes, analogous to quan-
tum point contacts (QPC) in two-dimensional electron gas
systems [3,4]. However, this analogy may be inappropri-
ate for sharp tip structures of atomic contacts [5], because
the Fermi wavelengths in metallic systems are comparable
to atomic spacings. Recently, Yeyati and his co-workers
[6] have suggested a resonant transport as an alternative
explanation, based on their tight-binding calculations
assuming the local charge neutrality. Despite several theo-
retical attempts [6–9], the origin of the quantized conduc-
tance has not been clearly understood because the validity
of simplifications such as the local charge neutrality
assumption [6,8] or a jellium electrode model [9], which
ignores the sharp tip geometry for electrodes, is rather
unclear.

In this Letter, to clarify the origin of the conduc-
tance quantization, we calculate conductances through
monatomic Na wires [10], taking into account the sharp
tip shape and discrete atomic structure of electrodes. We
perform real-space multigrid electronic structure calcula-
tions within the local-density-functional approximation
(LDA). Using the Friedel sum rule [11,12], which relates
the conductance to the density of states (DOS), we are
able to greatly reduce computational demands. We find a
resonant character in transport and a robust quantization
of conductances when the number �L� of atoms in wires
is odd. For even L, conductances are not quantized,
resulting in even-odd behavior in transport. This feature is
very different from the length-independent conductances
observed in ballistic quantum wires.
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Figure 1(a) shows a monatomic Na wire connected to
two electrodes, which have an inversion symmetry. Each
electrode is modeled by a cluster of M Na atoms in the bcc
structure. The (111) direction of the bcc lattice is aligned
with the wire with L Na atoms, which consists of two apex
atoms in the clusters and L 2 2 Na atoms between the
clusters. For the interatomic spacing d within the wire, we
use the bond distance of d0 � 3.659 Å in bcc bulk Na, and
also test various different values for d. Using the inversion
symmetry, the DOS can be decomposed into even �re� and
odd parity �ro� components. When only one eigenchannel
contributes to transport [9,13], conductances through the

FIG. 1. (a) The atomic structure for the L � 5 Na wire
connected to electrodes, with the inversion symmetry. Each
electrode is modeled by a cluster of M �� 64� Na atoms.
(b) Contour plot of the difference of the total charge densities
between the (L � 5, M � 64) wire and its reference system:
solid contours for 0.001 to 0.005 a.u. with the increment of
0.001 a.u., whereas dotted and dashed contours for 20.0003 to
0.0003 a.u. with the increment of 0.0002 a.u. Atomic positions
in the wire are marked by gray dots. A zigzag wire is shown in
the inset of (a).
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wire can be expressed in terms of re and ro using the
Friedel sum rule [11,12];

G �
2e2

h
sin2

∑
p

2
�Ne 2 No�

∏
, (1)

where Ne�o� [�
REF dE re�o��E�] denotes the number of

electrons with even (odd) parity and EF is the Fermi en-
ergy. With Eq. (1), we can greatly reduce the computa-
tional demand and analyze conductance characteristics in
terms of the DOSs.

We calculate self-consistently the electronic energies of
the wire system using the real-space multigrid method [14]
within the LDA. Norm-conserving pseudopotentials are
generated by the scheme of Troullier and Martins, and then
transformed into the separable form of Kleinman and By-
lander [15]. We use a supercell geometry containing two
electrodes, each of which has a cross section of 20.76 Å
wide. Electrodes in neighboring supercells are separated
by more than 11.64 Å, so that intersupercell interactions
are negligible. Using a grid spacing of 0.43 Å, we ensure
that the total energy is converged to within 1027 Ry. To
calculate the DOS, we use the Fermi-Dirac broadening of
ET � 0.052 eV (600 K) for the occupation of each level.
We find that the level splitting between even and odd par-
ity states, which have negligible wire characteristics, is less
than 0.003 eV. Since this value is much smaller than ET

and the average level spacing near EF , we do not expect
numerical errors in Ne 2 No due to the charge sloshing
problem [16].

The conductances calculated from the DOSs are plot-
ted as a function of L for M � 64 and 95 in Fig. 2. In
both cases G oscillates with L, exhibiting even-odd be-
havior. For odd L, we obtain G � G0 since the difference
�Ne 2 No� almost equals 1. For both M � 64 and 95,
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FIG. 2. For unstretched linear wires with (a) M � 64 and
(b) 95, G�L� (open circles) and Ne 2 No (filled squares) are
plotted as a function of L. For G�1� marked by asterisks, its
value may be modified due to the possibility of multichannel
transport (see text).
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similar results are found, indicating that the finite size
effect of clusters is negligible for odd L. For even L, on
the other hand, Ne 2 No is not equal to 1 and conduc-
tances deviate considerably from G0. Since the results for
M � 64 and 95 are different from each other, the finite
size effect seems to be more important for even L. At this
point, it is beyond our computational capability to calcu-
late conductances for larger cluster sizes. However, based
on the DOS analysis given below, we confirm that the
qualitative feature of G being smaller than G0 for even
L is not an artifact due to the finite size effect.

The DOS analysis provides useful information. From
95-atom cluster calculations, the results for re�E� and
ro�E� are drawn for the L � 4 and 5 wires in Fig. 3, and
compared with rR

e �E� and rR
o �E� for their reference sys-

tems (hereafter denoted by the superscript R), which are
defined by removing L 2 2 central atoms in the wire with-
out altering the intercluster distance. We find that re�o� and
r

R
e�o� are almost identical over a wide range of energies

except for near the Fermi level. From the projected DOSs
(PDOS) onto the L 2 2 central atoms in the wire (here a
sphere with the radius of 0.5d is chosen for each atom),
the difference between re�o��E� and r

R
e�o��E� is found to be

mainly caused by the existence of resonance states. Thus,
unlike conventional QPCs, the monatomic wires have the
resonant character, consistent with previous results [6].

We estimate the spatial extension of the resonance states
by comparing the charge densities of the wire system
�L � 5, M � 64� with those for its reference system [see
Fig. 1(b)]. Besides the major difference in the wire region,
an oscillatory feature due to the charge rearrangement
appears on a few layers in each electrode, in good agree-
ment with the previous calculations [17]. Thus, the reso-
nance states are not strictly localized in the wire but
extended somewhat into the electrodes.
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FIG. 3. For a linear wire with d � d0, re�E� (solid lines)
and ro�E� (dotted lines) are compared with rR

e �E� �� rR
o �E��

(dashed lines). The Fermi level (EF ) is aligned at 0 eV. Black
circles denote the locations of the resonance states which are
localized at the apex atoms of the reference system. Thick solid
and dotted lines denote the projected DOSs (PDOSs) with even
and odd parities, respectively.
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In the PDOS, there exists a half-filled resonance state
at EF for odd L (on resonance), while the Fermi level lies
between two resonance states for even L (off resonance).
The position of the resonance states affects Ne 2 No ,
and thus conductances. For demonstration, we use the
relation Ne 2 No � �Ne 2 NR

e � 2 �No 2 NR
o �, where

NR
e � NR

o because GR � 0 in the reference system. Since
each resonance contains exactly one extra energy level
[18], each filled resonance state with even (odd) parity in-
creases Ne�o� 2 NR

e�o� by 2 without altering No�e� 2 NR
o�e�,

and thus increases (decreases) Ne 2 No by 2; the factor
2 denotes spin degeneracy. However, the filled resonance
states are irrelevant because G does not change when
Ne 2 No changes by 62, as shown in Eq. (1). On
the other hand, the half-filled resonance state changes
Ne 2 No by 61, and if there is such a state, G equals G0.
When the Fermi level is located at the tails of resonances,
jNe 2 Noj can be quite different from 1 and G , G0.
This explains the correlation between the even-odd behav-
ior of conductances and the relative position of resonance
states with respect to EF.

A recent tight-binding study [6] for L � 1 has demon-
strated that the position of resonance states cannot be
arbitrary when the local charge neutrality is assumed.
Although this assumption is violated in atomic scale due
to the charge oscillation in Fig. 1(b), we find that the
charge neutrality does hold globally near the wire and
constrains the resonance position for general L. Since
Na is a monovalent atom, the wire system contains DN
�� L 2 2� extra electrons, as compared to its reference
system. On the other hand, we verify that the numbers of
filled resonances in the two systems differ by DN�2 [19],
which is a half integer for odd L. This matching indicates
that all extra electrons are in the resonance states near the
wire. Thus, the alternation of on and off resonances with
L results from the charge neutrality.

The same even-odd behavior is expected for a wide
class of wire structures, since the resonant character and
the charge neutrality are common features. We exam-
ine various wire structures such as stretched wires with
d � 1.1 and 1.2d0 and zigzag wires with the bond angles
u � 150± and 120± �d � d0� [see the inset in Fig. 1(a)].
In all cases, a half-filled resonance state is found for odd L
and G � G0 to within 2%, while the off-resonance trans-
port is realized for even L and G , G0. Thus, the same
even-odd behavior holds for other wire structures. On a
quantitative level, however, G is sensitive to the wire struc-
ture for even L. For the �L � 4, M � 64� system, for ex-
ample, G�G0 is 0.61 for a linear unstretched wire, 0.50
for a stretched wire with d � 1.2d0, and 0.71 for a zigzag
wire with u � 120±. Recalling that in the off-resonance
transport, G depends not only on the relative position of
resonance states but also on the ratio G�DE, where DE
and G denote the resonance spacing and width, respec-
tively, nonuniversal G values for even L can be understood
since the ratio depends on wire structure. For sufficiently
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large L, however, G becomes universal for even L as well
since DE ! 0 and G ! G0 as L ! ` [20]. In this limit,
the even-odd behavior disappears.

Here we note that two key ingredients responsible for
the even-odd behavior are the sharp tip structure and
charge neutrality, which are believed to be common in
other monovalent metallic wires. It is then very plausible
that the same even-odd behavior may appear in other
monovalent metallic wires. Previous experimental studies
[1,21] showed that atomic contacts made of various
monovalent metals have many properties in common.
In agreement with our expectation, recent calculations
[22] for gold wires found that G is smaller than G0 and
sensitive to wire structure for L � 4. Experimentally,
gold wires with L . 1 have been already reported [23,24].
Although these experiments did not exhibit an evidence
for the even-odd behavior, it is premature to reject the
possibility of the even-odd behavior in gold wires because
it is not clear whether uncontaminated gold wires with
even and odd L are both produced in the experiments
[25]. More experimental studies are required to clarify
the existence of the even-odd behavior.

We next discuss briefly atomic wires made of multi-
valent atoms. Since multiple eigenchannels contribute to
transport, Eq. (1) should be replaced by the generalized
formula [11], G � G0

PJ
j�1 sin2��p�2� �Ne 2 No�aj�,

where J is the number of channels and
PJ

j�1 aj � 1. One
crucial difference from monovalent wires is that the new
parameter aj does depend on wire structure. Thus, even
when the charge neutrality fixes Ne 2 No, G still depends
on wire structure. This explains why multivalent metallic
wires such as Al [1] do not exhibit clearly quantized
conductances as in monovalent wires. We point out that
for L � 1, the multichannel transport may be relevant
even for sodium wires. We find that the coupling between
two electrodes is not negligible even when the shared apex
atom is removed. This implies that the direct transport
between the electrodes, which is not mediated by the
common apex atom, is not negligible, in agreement with
Ref. [9]. For more precise conductance calculations for
L � 1, the generalized formula should be used, which
is beyond the scope of our paper. In recent experiments
for Na atom contacts [26], the tail of the conductance
histogram peak at G0 was shown to be extended up to
1.2G0, which may be interpreted as an indication of
at least two additional eigenchannels [27] with a small
contribution of �0.1G0 for each channel.

In conductance calculations using finite sized elec-
trodes, the level broadening ET should satisfy the
following constraints: to retain the metallic nature, ET

should be larger than single particle level spacing de

(�0.02 eV near EF), while it should be smaller than G
and DE (�0.3 eV). When ET varies between 0.03 and
0.15 eV, we verify that G for odd L is almost independent
(to within a few percent). For even L, on the other hand,
the resonance width G depends weakly on ET and thus
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the choice of ET affects G quantitatively although the
even-odd behavior remains robust. We also point out that
G depends on the sharpness of the tip structure. For the
pyramid-shape (100) tip, which is less sharp than the (111)
tip, we find that G increases by about 40% and the overlap
of resonances is enhanced, leading to weaker even-odd
behavior and less accurate conductance quantization for
odd L. Recent calculations [9] for an L � 3 wire with
flat electrodes showed that the energy dependence of the
transmission coefficient is almost negligible, implying an
even larger G of about 1 eV.

Finally, we note that when the exact inversion (or mir-
ror reflection) symmetry is relaxed, the even-odd behavior
still occurs because the on (off) resonance for odd (even)
L arises from the sharp tip structure and charge neutral-
ity. However, the conductance quantization for odd L is
weakened, as illustrated clearly in Ref. [6]. Recent experi-
ments [28] have demonstrated that the electrodes of atomic
contacts tend to be aligned with symmetric lattice axes.
Here we remark that a similar conductance oscillation due
to the resonance states is realized for heterogeneous sys-
tems [29], where wires and electrodes are made of different
atomic elements. The origin of the resonance is however
different; in heterogeneous systems, the charge transfer be-
tween the wires and electrodes is likely to occur and the
resulting Schottky-like potential barriers at both the wire
ends generate the resonance states even if the electrodes
are flat.

In summary, a first-principles method is implemented
to calculate conductances through Na wires, with the aid
of the Friedel sum rule. Unlike conventional QPCs, the
transport in monatomic Na wires has resonant character
due to the sharp tip structure. Combined with the charge
neutrality, the resonance states lead to robust quantized
conductances when the number (L� of atoms in the wire
is an odd number. For even L, the off-resonance transport
is realized with G smaller than G0. We suggest that the
same even-odd behavior of conductances may appear in
other monovalent atomic wires.
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