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We study two different parametric pumps—one for pumping spin currents, the other for charge cur-
rents—in interacting quantum wires. We find that, as a function of pumping frequency, the spin or
charge pumped per cycle has a nonuniversal crossover—depending on pumping details—between two
universal fixed point values of 0 and twice the electronic spin or charge quantum number. The direction
of flow between these two fixed points depends on whether the interactions are repulsive or attractive,
while the quantization itself is a signature of interactions.
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In recent years there has been a tremendous interest in
electron transport via the mechanism of pumping, in which
periodic perturbations of the system yield a dc current [1].
The idea of pumping charge by cyclic variation of exter-
nal couplings was first introduced by Thouless [2], who
showed that for a system of electrons in a periodic poten-
tial, an integer electronic charge is transported in an adia-
batic pumping cycle as a consequence of the Fermi energy
lying in a band gap. More recently, a generalization of this
picture has led to the observation of charge pumping in
open quantum dots where the Coulomb blockade is lifted
[3]. The corresponding theory for noninteracting systems
has been quite extensively developed [4,5]. For pumping
through a quantum dot, quantization has been shown in the
Coulomb blockade regime [6].

One of the questions that motivates our work is whether
bulk electronic interactions in gapless systems, such as
Luttinger liquids, could lead to quantization of charge
transfer in a quantum pump. Further motivation to
study pumping in interacting systems is provided by the
recent developments in coherent spin transport in low-
dimensional semiconductors [7,8]. The study of spin
transport is important not only for constructing devices
based on manipulation of spins [9], but also because it
offers the possibility of addressing fundamental issues
of spin-charge dynamics in low-dimensional strongly
correlated systems. A mechanism to pump a spin current
through a quantum wire would be an alternative approach
to existing coherent spin transport methods relying on
injection from ferromagnetic interfaces [10].

In this Letter we propose a quantum pump for charge
transport, and another for spin transport through 1D sys-
tems such as quantum wires, metallic carbon nanotubes,
or fractional quantum Hall edges. Our analysis focuses on
the Luttinger liquid model, which describes the generic
low energy behavior of 1D models of correlated quan-
tum particles with gapless excitations [11], with additional
time-dependent external interactions that drive the quan-
tum pump. The specific geometry we have in mind, de-
picted schematically in Fig. 1, consists of two externally
tunable perturbations that modify the local charge (spin)
density of the wire. Charge (spin) transfer is achieved by
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periodically varying the perturbing potentials with a rela-
tive phase difference ¢. While the setup of Fig. 1(a)
(Q pump) allows for pumping charge, that of Fig. 1(b)
(S pump) can pump a pure spin current under appropri-
ate conditions described below.

The response to pumping is an average transfer of charge
Q. = eN, (or spin Q; = hN,) in a cycle, so that we can
ds:ﬁne the corresponding pumping conductances as G.; =

%N ¢.s- We find that for repulsive interactions, the pumping
conductance G, as well as G in the case of spin pumping,
is quantized (at temperature 7 = 0) in the limit of slow
pumping, so that the average charge pumped per cycle
is Q. = 2e while the average spin pumped per cycle is
Qs = K, irrespective of the strength of interactions. In
the limit of fast pumping both these quantities go to zero.
The picture for attractive interactions is reversed. Thus,
in the slow pumping limit G., = 0, while in the limit
of fast pumping both G, and G; are quantized (Q, = 2e
and Q; = h) independent of the interaction strength. This
behavior in the LL regime is to be contrasted with the
noninteracting case where the two conductances are neither
quantized nor dependent on the pumping frequency.

In the presence of the externally tunable interactions
indicated in Fig. 1, the Hamiltonian gets an explicitly time-
dependent term:

§H () = >

o,o0'=1]

f dx Voo, YL () (x) . (1)

X=-a

FIG. 1. (a) Geometry for a charge pump. Two gates placed
a distance 2a apart are biased with ac voltages of the same
frequency, wy, and relative phase ¢. (b) Geometry for a spin
pump. In addition to a gate as in (a), a inhomogeneous magnetic
field points in the z direction near x = a, and oscillates with
frequency wg and a shifted phase ¢.
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Forthe Q pump, Vo (x, 1) = Vo (x,1) 8501 + Vo (x,1)8 o
is the sum of the two potentials arising from the gate
voltages, with Vg (x,f) being essentially zero outside
the gate’s point of contact (x = *a). The S pump has
Voo = Vo (x,0)8,0 + Vi (x,)7. 1, where 7! is the
ith Pauli spin matrix, and V;" is the coupling of the
local magnetic field (in the i direction) to the electron
spin. A general periodic time dependence of the po-
tentials V-, for example the harmonic form V- (x,7) =
VF(x)cos(wot = ¢/2) with a nonzero phase difference
¢, operates the quantum pump yielding a dc current /.
The current originates solely from the nonequilibrium
backscattering of carriers, due to the explicit time de-
pendence in the external Hamiltonian in Eq. (1). This
is in contrast to the dc current / = I; — I, due to a
dc source-drain voltage, where there are two distinct
contributions: (i) a direct part /; arising from the applied
dc voltage; the resulting conductance is gez/ h [12,13],
and (ii) a backscattered part ;. In the case of a quantum
pump, no source-drain voltage is applied, so there is no
direct contribution (I; = 0). Therefore, all the current
arises from the backscattering term: I, = —1I,.

To proceed we look at the Hamiltonian in the canonical
bosonization scheme [14], wherein the fermion fields,
linearized about the two Fermi points (*kp), are written
as Yy (x) = ey 4 (x) + e kY, (x). Here o =
1,1, and g ., are the right and left moving chiral
fields, which are represented as normal ordered exponen-
tials of bosonic fields, g, =: e VAT (x7) SULe =:
e~ VA7$Ls(x7) . The combinations dry + b= (P, +
®,)/2 and ¢ + ¢ = (P, — D)/2 separate the bulk
Hamiltonian H,, into independent spin (H,) and charge
(H,) sectors.

5{025{0+5{v

Uy

+

[(axw + vi%(aﬁbs)z“, )

where the velocities of the bosonic fields @ are de-
noted by v.(). The spin isotropic point with a global
U(1) X SU(2) symmetry corresponds to g, = 2, and the
noninteracting fermion limit is recovered for g, = g, = 2.
In the absence of the backscatterers, the dc two-terminal
conductance is G, = gce2 /h, while the spin conductance
is G, = gye*/h [12]. The time-dependent Hamiltonian
S8H (¢) in Eq. (1) describes both the backscattering and
forward scattering processes by the two point contacts.
The two contacts in the Q and S pumps can be reduced
to an effective single contact as long as the pumping fre-
quency wg <K Q. = vr/a (where vr is the Fermi veloc-
ity), as shown in the context of fractional quantum Hall
edges in Ref. [15]. We can thus form a low energy theory,
for which Q¢ is an upper cutoff, having a single scat-
terer at x = 0 with an effective backscattering amplitude
[ dx Vyqi(x,t)e 12 Also, since the pumping current is
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determined entirely by the periodic variation in backscat-
tering processes, we can drop the forward scattering part
of the interactions from the Hamiltonian. As a result, the
time-dependent term in the Hamiltonian can be written in a
matrix form with a unified notation for the Q and S pumps

SH (1) = vHO)Y(1)W(0), 3)

where W1 = (i ! 1 ¢l )). and
_ 0TI }

() Z[ L, ()7" 0 '
For the Q pump, the only nonvanishing term is I'g(z)
e 2kea 7" kg, 1) + e T2V (2kp, 1), while the
pump has [o(z) = e 24V (2kp,t) and also I';(r)
eti2kray ¥ (2kp,1). The V7 (k,t) are the Fourier modes
of the V) (x,t) potentials. Let us denote the two pa-
rameters whose periodic variations operate these pumps
as Xi(7) and X,(z). These parameters are identified as
X,(t) = e k@Y (2kp,t) for both pumps; Xo(r) =
eti%kray " (2kp,1) for the Q pump, while X»(r) =
et i2keayF (2kp, 1) for the S pump.

The response to this parametric variation in the charge
sector is given by the charge backscattering current: Iy =
i[NL,8H = —i[Ng,6H], where Ng; is the charge
density of right (left) movers [16]. This expression can
be generalized to include spin currents and written in the
following form

e

i = -0 YY), @

where M* = 74 ® u?, the u* matrix being a Pauli matrix
in the chiral space.

Consider first the effect of harmonic variations of the
parameters X;(r) and X,(¢) perturbatively, for weak bar-
riers. The leading order contribution to the dc pumping
current is I} = i [C. dt'{(I}(1), 6 H (¢')]) 51, Evaluating
this at the spin isotropic point, we get

=Y Te{{rt ) ")
v

><fdt/Im[F#(t)Fj(t/)]ImGR(t -1, (5

where GR(t — t') is the retarded Green’s function of
the bosonized operator t/r;g;g(t)tm;g(t). For the Q pump
u =v =0, so that the only nonzero component of
the generalized current is the charge current 12 =
%m(wo/wr)%[&ﬂ]ﬂﬂ)wo’ where wr is a
crossover energy scale set by the details of the path
described by the amplitudes I',(r) [17]. With X,(¢z) =
Xicos(wot — @/2) and X,(z) = X, cos(wot + ¢/2),
we have A = Im[XX;|sing—the area enclosed in a
pumping cycle by the parameters X(¢)-X,(7). For the S
pump, with the magnetic field in the Z direction, we get
only a spin-current 113, having the same expression as 12
above. The reason is that terms giving a nonvanishing
contribution to a dc current require 4 # v, in which case
the trace term is nonzero only for A = 3.
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The perturbative expansion is meaningful for g, > 2
only in the IR limit (wy < wr), and for g, < 2 only in
the UV limit (wo > wr). In both these limits G, =
0. For noninteracting electrons (g. = g5 = 2), we
get charge pumping in the Q pump with a frequency

= ¢ 2m0 _
gc:hwolp_

%Zsingo Im[4X,X5], similar to Ref. [4]. Also, for nonin-
teracting electrons, the S pump operates as a pure spin
pump, with a spin pumping conductance G, identical
in form to G, above. Both these expressions display
nonuniversal behavior, being dependent on the form of
the external perturbations.

The nonperturbative regime of repulsive (attractive) in-
teractions in the IR (UV) limit of pumping can be ad-
dressed by exact solutions. For the O pump we need only
consider the case of spinless electrons, where g < 1 for
repulsive interactions. For the special case of g = 1/2
the problem can be mapped into that of a time dependent
scattering problem involving free chiral fermions and an
impurity state. We have solved this problem exactly for a
periodic function Iy(r + Ty) = [p(z) [18]. The pumping
current 12 is given by

19(1) = glromlz[l - Z‘“%Re{ f_w‘”O Froo((tto))

% gi@lt=1) exp<2f 0ar/lro(t’)|2>”
(6)

where n,, is the equilibrium fermion occupation number.
In the UV limit (79 — 0) the charge-pumping conductance
G vanishes, as anticipated by the perturbative calculation.
In the IR limit (Ty — ) the charge pumped in a cycle is
S I Sy (Y
0= eme= [ty =5
where the integer n is the winding number of the I'y con-
tour. Thus, in the IR limit for g = 1/2, a quantum of
charge is pumped in a cycle of the Q pump for a contour
that winds once around the origin, regardless of all other
details of I'g(r). This universality allows us to define the
charge-pumping conductance for spinless electrons:
2
= N.=e/h. ®)

We can extend these results to other values of g along
the lines of the renormalization group (RG) arguments by
Kane and Fisher [12] for spinless electrons. In this pic-
ture, for single impurity interactions, there are two fixed
points: (i) the perfectly transmitting limit, and (ii) the
perfectly backscattering limit of the Luttinger liquid. For
repulsive interactions the barrier is a relevant perturbation
for fixed point (i) and is irrelevant for fixed point (ii).
As a result, for g < 1, the dc conductance G = 0 in the
IR limit. Thus, for a small applied dc voltage we get
I = 1; — I, = 0 and all the current is backscattered. For
the QO pump, where only the backscattering current mat-
ters, this picture implies the maximal pumping response
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independent pumping conductance:

=ne, ((7)

in the adiabatic (IR) limit. To calculate this we note (as
suggested by the g = 1/2 case) that in the adiabatic limit
the pumping current should be independent of the form of
the pumping path. Therefore choosing Ty(r) = X e!®
should pump the same charge per cycle as would any
other form of I'y(z). For the purpose of calculating the
pumping or backscattering current, this particular form of
pumping corresponds to applying an effective source-drain
voltage Vs = —wo/g [16]. Consequently, the backscat-
tering current, which is also the (negative) pumping
current, should be I, = I; = gV.r. We then recover a
quantized charge pumped in a cycle, N, = _%Ib = 1.
Expression (8) defines G, in the repulsive regime, inde-
pendent of interaction strength.

For attractive interactions (g > 1) the weak barrier per-
turbation is irrelevant for the fixed point (i) while it is
relevant for the fixed point (ii). Consequently I, — 0 in
the IR limit, upholding our earlier conclusion, based on
perturbation theory, that G = 0 for attractive interactions
in this limit. To access the behavior in the nonperturba-
tive UV limit of pumping, we note that at 7 = 0, and for
an effective dc source-drain voltage, there exists an exact
g — 1/g duality such that the backscattering current sat-
isfies the relation: I, (Vegr, g) = % — g2, (Vegr, 1/2)
[19]. At least in the particular case of T'o(t) = Xye'®,
this duality implies that the UV limit of pumping conduc-
tance for g > 1, should be equal to the IR limit for g < 1,
which is given by (8). We thus get a complete picture of
the universal behavior of the charge pumping conductance
G. A comparison with dc source-drain conductance G,
shown in Table I, reveals a complementary behavior with
frequency.

In the case of pumping in a fractional quantum Hall bar,
the charge pumped per cycle (in the IR limit) is always
the electron charge e, irrespective of the filling fraction
v (= g). This follows for the particular geometry we
studied; other pumping geometries, operating through anti-
dots [20], can be designed so as to pump fractional charge
per cycle.

Including spins in our description of the Q pump, the
physics at the bulk spin-isotropic point (g; = 2) is gov-
erned by the same fixed points as in the spinless case
[12]. However, the duality relation is changed; also, the
special form of pumping [o() = X4 e'®’, corresponds to
Vett = —2wo/gc [21]. Consequently, the behavior of G,
is the same as that of 2G.

TABLE I. The IR and UV fixed point values, for repulsive
(g < 1) and attractive (g > 1) interaction regimes for spinless
electrons, of the charge pumping conductance G. The corre-
sponding values for the dc charge conductance G from Ref. [12]
are also shown.

(g<1 (g>1)
Conductance IR uv IR uv
G 0 g g 0
G 1 0 0 1
096401-3
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We now turn to the behavior in the nonperturbative
regimes for the S pump. The external potential § H , can
be written as

SH (t) = |X1| coswot cosy/a D.(0) cos/7 P(0)
+ |X5| cos(wot + @)
X sin[y/7 @c(0) + x]siny/7 @y(0), (9)

where y is the constant phase difference between X; and
X5. From the RG analysis of Ref. [12] we know that, for
gs = 2, g, < 2, the most relevant perturbation due to a
single barrier at x = 0 is v, cos /7 ®.(0) cos /7 D,(0),
and the system is a spin and charge insulator. Conse-
quently, in the IR limit 12’3 = 12’3, which means that
for the S pump, the pumping current 113, = g5 Ve /27,
where Vesr is the “voltage” that couples to the spin in the
action. Such a “voltage” gives the barrier term a time de-
pendence: v, cos(y/7 D) cos(y/7m ) cos(gsVerst/2) +
v, cos(y/7m D) sin(\/7 Dy) sin(gsVesr?/2), and can only
yield a spin current. This time-dependent barrier is the
same as Eq. (9) when y = 7/2 = ¢, and |X;| = |Xal,
so that we can identify Verf = —2wo/gs. Thus, for this
particular form of pumping, 12 = 0 and 113, = 2w /2.
If in the IR limit of pumping the spin transferred per cycle
is independent of the form of the perturbing parameters,
as was argued earlier for the spinless charge pump, then
the S pump has an IR fixed point spin conductance
Gy = 2¢?/h, the same as the Q pump’s G... Furthermore,
the approximate duality of Ref. [12] seems to imply that
the other nonperturbative regime for attractive interactions
(gc > 2, g = 2) in the UV limit of pumping also has a
fixed point value of G; = 2¢?/h.

Finally, we consider the pumped current flow for the
quantum wire connected to reservoirs. We analyzed the
dc spin/charge current driven by the periodic driving
of the two pumping parameters, assuming that the only
contribution to the pumping current /,, comes from the
backscattering——1,, without a direct contribution /.
This is valid for adiabatically contacted reservoirs so that
the charge (spin) pumped can flow without accumulation
and backscattering. Any accumulation of charge (spin) in
the contacts will generate a voltage across the terminals
and lead to a nonzero backflow I;. In practice, the degree
of backflow will depend on the nature of the contacts. In
particular, we would like to point out that for open wires,
running the pump would lead to a nonzero voltage across
the terminals of the wire so that the backflow completely
compensates the pumping current. While this may not
be of particular use for producing a voltage or imbalance
of chemical potential for charges, the imbalance between
chemical potentials for up and down spins so generated
in the S pump is an interesting realization of a “spin
battery.” Let us also note here that one can operate the
Q(S) pump without contact to reservoirs, as in a ring
geometry, and measure the current flow (for the charge
case) as in persistent current experiments, with a SQUID.
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In conclusion, we have proposed a charge and a spin
pump in a Luttinger liquid wire which shows universal be-
havior in the IR and UV limits of pumping. As can be
deduced from our result (6) for g = 1/2, the frequency
dependent crossover regime is nonuniversal, depending on
details of the path that the pumping amplitude I'y(7) traces
on the complex plane. Finding the exact response to pump-
ing, for all g and over the full range of frequencies, is an
open nonequilibrium problem. It is not obvious that tech-
niques, such as the Bethe ansatz—which give the exact
dc conductance-voltage relationships —will be applicable
here. The quantization of pumped charge (spin), arises
in the asymptotic limits of pumping when the “impurity”
effectively separates the system into two LL wires, since
the tunneling density of states (TDOS) vanishes; it is ab-
sent for a noninteracting system where the TDOS is a con-
stant. Thus, the reason for this quantization is distinct from
that in gapped Fermi systems shown by Thouless [2]. We
note that including long range interactions in our LL. model
does not qualitatively change this picture of the vanishing
TDOS, so that we expect the quantization to be robust.
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