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An infinite-range model of an elastic manifold pulled through a random potential by a force F is
analyzed focusing on inertial effects. When the inertial parameter M is small, there is a continuous
depinning transition from a small-F static phase to a large-F moving phase. When M is increased to
M., a novel tricritical point occurs. For M > M., the depinning transition becomes discontinuous with
hysteresis. Yet, the distribution of discrete “avalanche”-like events as the force is increased in the static
phase for M > M. has an unusual mixture of first-order-like and critical features. The results may be
relevant for the onset of crack propagation and for dynamics of geological faults.
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A wide variety of driven systems are characterized by an
elastic manifold that is pulled through a quenched random
medium by a uniform applied force [1]. If the dynamics
is dissipative—e.g., sliding charge density waves [2], vor-
tex lattices in superconductors [3], and domain walls in
ferromagnets [4]—such systems exhibit a critical depin-
ning transition in the absence of thermal fluctuations. A
small applied force F is not enough to overcome the ran-
dom pinning forces and the system remains trapped in one
of many possible metastable configurations. However, as
F is slowly increased, some sections become unstable and
move, only to be stopped by the elastic forces from more
strongly pinned neighboring regions. As F is increased
even further, there will be a sequence of these discrete,
localized “avalanche” events with a distribution of sizes
s [5]. As a critical force F. is approached from below,
arbitrarily large avalanches can occur. Above F'., the driv-
ing force is able to overcome the pinning, giving rise to
a nonzero average velocity ©. The transition between the
two phases is continuous with v playing the role of an or-
der parameter that vanishes as v ~ (F — F.)? as F. is
approached from above. This class of dissipative systems
has been analyzed by renormalization group (RG) methods
[1] with the results supported by numerical [6] and limited
experimental [7] evidence.

In some systems, in particular crack fronts in brittle ma-
terials [8], geological faults [9], and motion of contact
lines of droplets on dirty or rough surfaces [10], the dy-
namics are not dissipative and inertial effects can be im-
portant. In this Letter, we explore the effects of inertial
stress transfer in which the motion of one segment creates
a transient stress, in addition to the static elastic stress, on
other segments. In the presence of pinning, the motion
will be mostly forward; this makes the positive (forward
pulling) parts of the transient stress transfer the most im-
portant; we call these stress overshoots. Although we will
focus only on such dynamic stress transfer effects, direct
effects of inertia will have similar consequences: if a seg-
ment moves forward in an underdamped manner so that it
overshoots—passing a new local minimum before relax-

096107-1 0031-9007/01/87(9)/096107(4)$15.00

PACS numbers: 68.35.Rh, 83.60.Uv

ing back into it—the stress it transfers to the other regions
will reflect this overshoot.

Our focus will be on the nature of the depinning transi-
tion in the presence of stress overshoots; a key question is
whether or not the transition from the pinned to the mov-
ing phase remains continuous or becomes “first order”—
characterized by a finite jump in ¥ as a function of the
applied force and perhaps by hysteresis. We will also
consider the distribution of avalanche sizes as the de-
pinning transition is approached from below, of particu-
lar relevance for geological faults as these represent the
“earthquakes.”

Near the depinning transition, the motion will be very
jerky with a lot of starting and stopping. Thus, the essential
physics can be captured by models in which space, time,
and the manifold’s displacement in the direction of motion,
h(x, 1), are all discrete. The elastic stress on a segment x
takes the general form

o(x,1) = D Y Iy(Mh(y,t — 1) = Th(x,1), (1)

y =0

with the static stress transfer given by Ji, = 3., Jyy(7)
and J = Dy Jiy- We take the simplest form of the stress
overshoots: only lasting for one time step. With nearest
neighbor coupling we have Jyy(0) = (HZM) and Jyy(1) =
- % for x # y where Z is the number of nearest neigh-
bors and M is the magnitude of the stress overshoot. For
M = 0, a key property of the elastic stress transfer is that
it is monotonic, i.e., increasing in time when the /’s in-
crease. This implies that the average velocity and hence
the critical force are unique [11]. This monotonicity is an
essential feature for the RG analysis [2]. For M > 0, the
stress transfer is nonmonotonic in time so that the average
velocity is not necessarily a unique function of F.

We take the displacements A(x, ) to be pinned at a dis-
crete set of possible values with associated pinning (yield)
strengths fy[x, h(x, £)]. The dynamics is simple: if the to-
tal force on segment x exceeds fy at that point, the
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segment jumps forward, ie., if o(x,7) + F >
frlx,h(x,7)] then A(x,t + 1) = h(x,1) + A[X, h(x, )]
with A the distance to the next pinning position; otherwise
h(x,t + 1) = h(x,t). As long as the jumps A[x, h(x, t)]
are random variables independently drawn from a smooth
distribution D(A)dA, the randomness in the pinning
strengths is not essential and, for simplicity, we make
them all equal.

We now take the first step in analyzing such systems
by studying a mean field—more precisely an infinite-
range—model. For the case without stress overshoots,
such a model was the needed starting point for the RG
analysis of finite-dimensional systems. We thus consider a
model of N segments each coupled to all the others. The
stress on h(x, 1) is then simply

o(x,t) = h(t) — h(x,t) + M(h(t) — h(t — 1)), ()

where h(t) = %Z} h(y,t) is the average over the other
segments.

In this infinite range model, all sites are statistically
equivalent and coupled only via the mean field h(f). We
can therefore fully characterize the configuration by the
excess forces on the segments: f;(x) = o(x,7) + F —
fy and study the the equation of motion for the excess
force distribution p,( f;)df;. A self-consistency condition
follows from the “spatial” averaging of the excess force:

<ft>=f_mftpt(ft)dft=F_fY + Mv,, (3)

where ¥, = h(t) — h(t — 1) is the instantaneous spatially
averaged velocity. For static solutions, o = 0, the stress
overshoot plays no role and one can show that there are

many solutions as long as the applied force is less than the
static critical force F.o = fy — % %, where the bars here
denote averages over D(A).

We first consider the moving phase, studying the steady
state limit for which ¥, = v > 0 is independent of time.
Equation (3) implies that in this case the stress overshoot
has the same effect as an additional applied force, F —
F + M, and the steady state p(f) depends only on ¥
(and D). 1t is easiest to work with the particular jump
distribution D(A) = ¢~® which corresponds to random
pinning positions with density 1/A chosen to be unity.
However, the qualitative behavior is similar for any smooth
pinning distribution with D(0) finite and nonzero. For M
less than a critical value, M. = 1, ¥ rises continuously for

F > F_. as

_ F_FCO
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for small v. The linear increase in v for mean-field mod-
els with jumps is the average displacement of a segment
responds linearly in a nonsingular way to an increase in
the total force on it [1]. For the exponentially decaying
jump distribution, the full expression for v is
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with €, = F — F,p and uw = M — M,.. Note that for

large applied force v saturates in a generally unphysical
manner.

As M increases to M., the width of the continuous de-
pinning transition shrinks to zero and there is a “tricritical”
point at M = M., F = Fy. Near this tricritical point the
scaling behavior is o ~ |u| ~ ./€p, indicating a new uni-
versality class of depinning transitions.

For M > M., there is a jump in ¥ from Uy, ~ u to
zero when F is decreased through a new lower critical
force FL = Foo — (1 + u — T + 2m). Just above F!
there are two stable solutions: a static one and a moving
one with Z—; < 0. Between F! and F. there is hysteresis
as might be expected at a first-order-like phase transition:
it is harder to stop the motion in the presence of overshoots
than in their absence, but once the overall motion does stop,
the overshoots will have less effect as F is increased back
up again. A schematic phase diagram is shown in Fig. 1.

We now investigate the avalanche dynamics below the
depinning threshold. An avalanche is the forward motion
of a finite number of segments in response to the initial
motion of one segment. The applied force is increased only
in order to trigger the motion of the initial segment and is
then held fixed until the avalanche stops. The segments that
move forward in a single finite avalanche are those whose
f is within an infinitesimal, O (%), slice near f = 0 of the
distribution p( f); for continuous p( f) all that matters is
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FIG. 1. Schematic phase diagram as a function of F and M
with fy = 2.0. The dashed phase boundary at F, is a critical
line separating the stationary and the moving phases. Above
the tricritical point (*) depinning is hysteretic with vertical lines
indicating the region of metastability; the critical force on de-
creasing F, F i is always the solid line, but the critical force
on increasing F, F!, is history dependent. Insets: #(F) for
M = M, (lower) and M > M, (upper); arrows indicate the di-
rection of change of F.
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thus p(0). The total number of segments that hop forward
at one time step, n,;, will have Poisson statistics with mean
determined by the increase in the total force on a segment
from the previous time step. The mean number that hop at
a given time ¢ is given by

() = p(O)A[(1 + M)n,—y — Mn;—,]. (6)

If this mean becomes negative, the avalanche will stop. We
define the parameter, I' = p(0)A—essentially the mean
local response to an increase in the total force.

We are primarily interested in the large avalanches, for
which n, will typically be large. Given large n,_, and n,_,
the randomness will cause approximately Gaussian fluctu-
ations in n, of magnitude of order \/n;. With no stress
overshoots, M = 0, we can approximate the dynamics by

ntt) _p _ nn@.

dt
with n white noise. The constraint that n(r) be posi-
tive makes finding the distribution of the avalanche size,
s = [dtn,, a first-return-to-the-origin problem. A criti-
cal point occurs at I' = 1 [p.(0) = %] , at which there is
a power law distribution of avalanche sizes, Prob(ds) ~
S%ds for large s [1,12]. For I" > 1, infinite avalanches
occur as the motion of one segment spawns an average
of more than one descendant at the next time step. For
smaller I', the cutoff in the avalanche size distribution is
given by § ~ ﬁ and Prob(ds) ~ Ss%e_(l_r)zx/zds for
large s as shown in Fig. 2.

In the more general case with stress overshoots, the
stochastic equation becomes second order in time since
the number of segments that hop forward is dependent on
two previous time steps. With a small amount of stress
overshoot, the avalanche dynamics is strongly overdamped
with critical point still at I' = 1, but the distribution of
avalanche sizes is modified by a coefficient 1/(1 — M).

Near the tricritical point, we have

Dn(s) +

— Dn(r) + (OM — 1) d’;—(t’)

+ +/n(t) n(r). (3

At the critical value of M, M, = 1, the avalanche dy-
namics becomes undamped giving rise to a new dizstribu-
tion of avalanche sizes. At the tricritical point ‘! d’}ﬁ’) =
/n(1) 9(t), and we have a “particle” with random accelera-
tion whose first return to the origin we are interested in.
The tricritical distribution of avalanche sizes is found to
broaden to Prob(ds) ~ s%ds for large s [13]. The typical
avalanche of size s now lasts for a time 7 ~ s/ in con-
trast to 7 ~ s'/2 in the absence of stress overshoots.

For M > M., the deterministic part of the avalanche
equation of motion is that of a time-reversed harmonic
oscillator. If p(0) is small—i.e., below the critically
damped line—n(¢) grows exponentially with time, but then
crashes down to zero as a result of the incipient oscillation.
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FIG. 2. Log-log plot of avalanche distribution: Prob[s/+/2 <
size < \/59] The solid lines have slope % and %, the theoretical
predictions at criticality, M < 1, and tricriticality, M = 1. The
dashed curve is from the deterministic approximation when M =
2, I' = 0.88; this is just below the “first-order” line at which the
dot-dashed curve obtains. The symbols denote numerical data.

Above a critical I', T'.(M) = (li—%,)z [from Eq. (6)], large
avalanches grow exponentially and become infinite. On
the critical line, some avalanches become infinite while
others remain finite. Because of the exponential growth of
n(t) both above and below the critical line, the randomness
will not have much of an effect once an avalanche becomes
large and a deterministic analysis in which all the random-
ness is encoded into random initial » and f,—'; becomes valid.
Just below the critical line, there is a clear delineation in the
distribution of avalanche sizes between those avalanches
that would remain finite and those that would become in-
finite at the critical line. Indeed, just below I'.(M), a
finite fraction of the avalanches will have size of order
§ ~ explAM)//(T'.(M) — T')] to within a multiplicative
factor of order unity; these last roughly half the oscillation
period. Note that for M = 1, A~ u = M — 1 and the
scaling of 1 — T" versus u is like that of F — Fy versus
M in the moving phase. Most of the other avalanches will
be small, but with a long tail in log s scaling as

1 _d(Ins)
s(Ins)? 5T (Ins)? ©)

for 1 < Ins < In§. This broad distribution for the finite
avalanches persists at the depinning transition, but now
there is also a nonzero probability that an avalanche will
be infinite as indicated in Fig. 2. These results suggest a
new hybrid transition for M > M, with a diverging scale,
§, but also discontinuities, particularly in v (F).

So far, we have not established the connection between
the driving force, F, and the density of about-to-jump
segments p(0). This is needed to connect together the
analysis of the pinned and the moving phases. As long
as the avalanches remain finite and the driving force is
adiabatically increased, the total force distribution p ( f)df

Prob(ds) ~
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will be independent of M; the avalanche distribution will
only affect when segments jump and hence the small
scale (f ~ %) behavior of the stationary configurations
between avalanches. For generic initial conditions—
continuous p( f) which must be consistent with randomly
positioned pinning values of i(x,)—I" will increase with
F to reach unity only right at F.o, although the way in
which it approaches this value is nonuniversal and history
dependent. Thus for M < 1, I'. = 1 and the infinite
avalanches will only occur when F > F(, the same point
above which v > 0.

For M > 1, however, I will reach the value I'.(M) at
a value of the driving force F!, that depends on the initial
conditions as well as on M. From an analysis of Eq. (3), it
can be shown that F! is between F!(M), the minimum F
for which a moving solution exists, and Fq, as should be
expected. Thus, if F is increased above F! and back down
there will be hysteresis. If F is decreased below F! so
that the system stops and is then increased back up again,
the behavior can be complicated as p(f) will generally
not be continuous. Depending on the parameters [includ-
ing D(A)] and the history, the depinning transition on the
second increase of F' can either be of the hybrid type dis-
cussed above with an exponentially growing characteristic
size 3, of large avalanches which diverges at a new F!; or
a strongly discontinuous transition with I jumping from
below I'. to above discontinuously without an extensive
number of precursor large avalanches. Some of this be-
havior is summarized in Fig. 1.

We have found that in a simple infinite-range model of
depinning with dynamic stress overshoots, subtle behav-
ior can occur. For large overshoots, a hybrid transition
exists when the force is increased adiabatically. This is
characterized by exponentially large, almost-deterministic
avalanches followed by runaway at a critical force to a
nonzero velocity state; this moving state persists to a lower
critical force as the force is decreased back down. Various
history dependent effects can occur in this large overshoot
regime. For smaller stress overshoots, there is a reversible
critical transition similar to that in the absence of over-
shoots. These two regimes are separated by a “tricritical”
point which represents a new universality class.

All of this behavior should obtain for a broad class
of infinite-range models, including ones with locally un-
derdamped relaxation caused by inertia [14,15]. But the
crucial question is: what of this behavior persists in finite-
dimensional models?  For large stress overshoots the
depinning is surely of a different character than in purely
dissipative systems, although what aspects of it might re-
semble the infinite-range model is far from clear. For
small stress overshoots, it has been argued elsewhere that
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the critical force with M > 0 is generically less than F g
in finite-dimensional models with long-range interactions
[8]. But whether this implies that the transition imme-
diately changes character when any stress overshoots are
present—and thus presumably that there is no tricritical
point—or whether dissipativelike critical behavior can still
exist with small overshoots, we must leave as an open
question. This is particularly relevant for the case of
geological faults as the two types of behavior found in our
mean-field model could be thought of, if the applied force
is provided by an appropriate weak slowly pulled spring,
as representing power-law Gutenberg-Richter distributions
of earthquakes versus “characteristic earthquake” behavior
with only a few small earthquakes interspersed by large
fault-spanning events [16]. Preliminary indications from
numerical studies of finite dimensional versions of this
model suggest that both of these types of behavior are
possible.
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