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Conditional Large Fock State Preparation and Field State Reconstruction in Cavity QED
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We propose a scheme for producing large Fock states in cavity QED via the implementation of a highly
selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field
and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside
a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field
dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing,
in a new and efficient way, the Wigner function of the cavity field state.
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Harmonic oscillators have been, from the very begin-
ning, at the core of the quantum theory. It was not un-
til the invention of the laser [1], however, that their most
interesting statistical properties could be tested in con-
trolled experiments associated with electromagnetic fields.
Since then, considerable theoretical and experimental ef-
forts have been devoted to the production and characteriza-
tion of nonclassical states of light, such as sub-Poissonian
[2], squeezed [3], or Schrödinger cat states [4,5].

A great advance in the field came with the micromaser
[6], where two-level Rydberg atoms interact with one mode
of a high-Q cavity in an experimental realization of the
Jaynes-Cummings (JC) model [7]. Many important experi-
ments have followed, revealing the dynamical properties
of this model, such as the observation of collapse and re-
vivals [8] and the discrete character of the Rabi oscillations
[9] of the atom-field doublets. The micromaser technique
has also allowed the investigation of the most fundamental,
nonclassical states of harmonic oscillators, especially the
number (Fock) states. In particular, recent papers reported
the quantum nondemolition measurement of the one pho-
ton Fock state [10] and the preparation of up to two photons
[11] in the cavity mode.

The atom-field dynamics as well as the statistical prop-
erties of the field are observed, in cavity QED, through the
detection of the atoms, which work either as a probe for
the coupled system or as a measuring device for the light
mode state, depending on the setup. Indeed, several theo-
retical results have shown that appropriate settings of this
system enable a complete reconstruction of the quantum
state of the cavity field [12,13]. However, despite the great
advances in the latest years, the implementation of these
proposals, as well as the generation and characterization
of large Fock states, remain as challenging experimental
problems in this field. In these cases, the characteristics of
the JC model require the use of improved apparatus, such
as cavities with higher quality factor and enhanced ways
to control and manipulate the atoms.

Alternatively, different atom-field couplings could be
used. In particular, selective interactions [14] present new
ways to induce transitions in this system. Unlike the JC
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model, where the same resonant or dispersive regime ap-
plies for all initial atom-field states, selective interactions
separate these states in subspaces with distinct coupling
regimes. This property represents more versatility and the
possibility to implement new classes of experiments even
under current technological conditions.

In this paper, we show that it is possible to implement a
selective interaction between three-level atoms, a classical
field, and a quantized cavity mode. We study the feasibility
of our scheme based on available experimental parameters
and propose, as a first application, the preparation of large
Fock states in the quantized mode. As a second relevant
application, we show that selectivity in this system allows
for the measurement of the probability distribution P�n� of
the quantized field state in the Fock state basis jn�. Finally,
we show that it is possible, as a natural consequence, to
propose an efficient reconstruction method of the Wigner
function [15] of the cavity field and, therefore, of its com-
plete quantum state [16].

Our proposal relies on the Raman excitation of a
three-level atom by a classical field of frequency vL and a
quantized cavity mode of frequency v0, in a lambda
configuration (see Fig. 1). The classical field drives
dispersively the transition from level jg� to level jh�, with
coupling constant VL and detuning d � vhg 2 vL ¿
jVLj. The cavity mode couples level je� to level
jh�, with coupling constant g and the same detuning

FIG. 1. Scheme for the Raman excitation of the three-level
atom.
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d � vhe 2 v0 ¿ jgj. In the interaction picture, the in-
teraction Hamiltonian in the rotating wave approximation
is given bybHint � h̄VL bshge2idt 1 h̄gbshebae2idt 1 H.c. , (1)

where bsjm � j j� �mj is an electronic flip operator, and â
is the annihilation operator of the quantized cavity mode.
Since level jh� is coupled dispersively with both levels jg�
and je�, it can be adiabatically eliminated giving rise to
an effective second order anti– Jaynes-Cummings Hamil-
tonian

bHeff � h̄
jVLj

2

d
bsgg 1 h̄

jgj2bayba
d

bsee

1 h̄
jgV

�
Lj

d
�bsegbay 1 bsgeba� , (2)

where we chose VL in phase with g. The first two terms
correspond to dynamical energy shifts of levels jg� and je�,
and the last two terms describe transitions between these
levels, accompanied by creation or annihilation of a photon
in the cavity mode. Notice that the difference of the energy
shifts of level jg� and je�, which depends explicitly on the
number n of photons in the cavity mode, will determine the
effective resonance frequency of the jg� $ je� transition.

The Hamiltonian (2) is block separable in the subspaces
spanned by the states �jg, n�, je, n 1 1�� of the atom-field
system. There is a specific difference of energy shifts
Dn

eg, associated to each one of these subspaces, which may
be compensated by external action on either the atom (dc
Stark shift) or the cavity mode (by shifting its frequency).
In this way, transitions inside a chosen subspace may be
tuned to resonance, while other transitions remain disper-
sive, producing a selective interaction in the atom-field
Hilbert space. Once this frequency adjustment is made for
one specific subspace �jg, No �, je, No 1 1��, the detunings
associated with the remaining subspaces (n fi No� change
to

Dn � Dn
eg 2 DNo

eg �
jgj2

d
�n 2 No� . (3)

By controlling the ratio between g and VL, the detunings
Dn can be made large enough for considering the effective
interaction in the remaining subspaces as dispersive, i.e.,
Dn ¿ �jgV

�
Lj��d. In this case, if the atom enters the

cavity in state jg�, it can only experiment a Rabi flip to
level je� if the cavity has No photons.

Hamiltonian (2) can be easily diagonalized. In particu-
lar, after the frequency adjustment made in Eq. (3), its sta-
tionary eigenstates are given by the ground state je, 0� and
the doublets

j6, n� �
Gnjg, n� 1 l6,nje, n 1 1�q

l
2
6,n 1 G2

n

, (4)

with respective eigenvalues 0 and l6,n �
Dn

2 6 Vn.
In Eq. (4), Gn � 	�jgV

�
Lj��d


p
n 1 1 and Vn �p

D2
n�4 1 G2

n.
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For arbitrary values of the detunings Dn, if the atom
enters the cavity in state jg�, and the field is initially in state
jF0� �

P
n cnjn�, the state of the system evolves, after an

interaction time t, to

jC�t�� �
X
n

cne2i	�Dnt��2

∑µ

cosVnt 1
iDn

2Vn
sinVnt

∂

3 jg, n� 2
iGn

Vn

3 sinVntje, n 1 1�
∏

. (5)

In particular, if the atom is found in state je�, after it has
interacted with the light fields during a time interval t �
pd�2�jgV

�
Lj
p

No 1 1�, the correlated state of the cavity
mode is

jFe�t�� �
cNo

jNo 1 1� 1
P

nfiNo
bnjn 1 1�q

jcNo
j2 1

P
nfiNo

jbnj2
. (6)

The coefficients bn are given by

bn �
cn�2i�e2i	�Dnt��2
 sin p

2

p
q��No 1 1�

p
q

, (7)

where q � 	r2�n 2 No�2
�	4�n 1 1�
 1 1, and r �
jgj
jVLj

. Note that, as q increases, the coefficients bn become
negligible compared to the coefficient cNo and jFe�t��
tends to the Fock state jNo 1 1�. For a chosen No , this
condition is satisfied if r ¿ 2

p
No 1 2. In this limit,

the Fock state jNo 1 1� could be produced in the cavity
field, as long as cNo fi 0. In principle, one could use
this scheme to produce any Fock state in the quantized
mode. In practice, however, one is limited by the decay
time tc of the cavity divided by No , which must be much
longer than the interaction time, t. Typically, for Ryd-
berg atoms interacting with high-Q microwave cavities,
g�2p � 50 kHz [10]. For No � 10, d�2p � 1 MHz,
and VL � g

30 �r � 30�, t will be of the order of 1 ms.
Interaction times of this order are of the same order of
the decaying time of the open cavities used on these
experiments, suggesting that cavities with slightly higher
Q factor are needed to implement experimentally the
proposed scheme. Closed cavities, with longer decay
time, may also be used (tc � 0.3 s) [17]. However, those
cavities do not allow the use of highly excited circular
atoms and, therefore, the atomic decay time becomes a
concern. Furthermore, it is also more difficult to apply
the external classical field to them.

We may define the fidelity of generating the selected
Fock state jNo 1 1� as F � j�No 1 1jFe�t��j2. F is
approximately given by 1 2

P
n �jbnj

2�jcNo j
2� and it ap-

proaches unity when the coefficients bn’s go to zero. Initial
states for which cNo

. cn enhance the protocol efficiency.
In this sense, good candidates for initial cavity state are
coherent states with mean number of photons around No .
Not only do they satisfy cNo . cn, but they are also easily
produced in microwave cavities, by just coupling them to
093601-2
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a microwave generator [5]. In Fig. 2, we show an example
for the preparation of large Fock states in the cavity mode,
after only one atom has interacted with the fields. From an
initial coherent state ja� with jaj2 � 5, the Fock state j6�
is prepared in the cavity with a fidelity higher than 0.99.

The Fock state preparation is conditioned to finding the
atom in state je�. From Eqs. (5), (6), and (7), it is easy
to show that, as r becomes larger, the probability Pe of
measuring the atom in the excited state approximates the
probability PNo of finding No photons in the initial cav-
ity field state. If r cannot be made large enough due
to experimental limitations, the state one wants to pre-
pare is polluted by marginal Fock state populations. In
this case, one only needs to send a second atom in state
jg� and set the experimental parameters to the transition
jg, No 1 1� ! je, No 1 2�. The probability of finding
both atoms in the excited state becomes closer to PNo , and
the field state produced will be, with very high fidelity,
state jNo 1 2�.

The equivalence between Pe and PNo
for large r sug-

gests a very practical and easy way to obtain the photon
statistics Pn of an arbitrary state in the cavity mode. In fact,
for each selected transition jg, N� $ je, N 1 1�, the pro-
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FIG. 2. Preparation of the Fock state j6� in the cavity mode by
measuring the atom in its excited state after it passed through
the cavity. The cavity field was initially in a coherent state with
jaj2 � 5. The value of the parameter r was set to r � 30.
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portion of atoms measured in state je�, Pe, gives directly
PN , for all possible values of N . Combined with the pos-
sibility of coherently displacing microwave cavity fields,
this allows one to fully reconstruct the Wigner function of
the state of the quantized mode. Since it does not rely on
additional devices, such as Ramsey interferometers, this
scheme simplifies the task of field state reconstruction, as
we will discuss below.

The Wigner function of the state r̂ of a harmonic oscil-
lator can be written as

W�2a� �
2
p

X
n

�21�nPn�a� , (8)

where Pn�a� � �nj bD�a�r̂ bD21�a� jn� is the number dis-
tribution of state r̂ displaced coherently in the phase space
by a [16,18]. This tells us that, to obtain the Wigner func-
tion of the cavity field on each point of the phase space, all
one needs to know is the number distribution of the field,
after it has been displaced in the phase space. In fact, the
first experimental reconstruction of the quantum state of a
harmonic oscillator made use of Eq. (8) [19]. The number
distribution Pn was obtained by analyzing the time evo-
lution of the population of the internal states of a trapped
ion coupled via the Jaynes-Cummings interaction with its
vibrational degree of freedom. A similar scheme could
also, in principle, be applied in cavity QED. In our case,
the coherent displacement of the cavity field can be easily
implemented by coupling the cavity to a microwave gen-
erator. After this step, one can use the selective scheme
discussed above to measure Pn�a� and, then, Eq. (8) to
calculate W �2a�. This method is exact for large values
of r, and it represents an experimentally simple way to
measure the photonic statistics of the cavity field and to
reconstruct its Wigner function. It requires neither the
preparation of atoms in a coherent superposition of upper
and lower states nor the exact control of interaction times
of the atoms with Ramsey zones, as in usual schemes that
rely on Ramsey interferometry [20]. As an example, we
show in Fig. 3 the efficient reconstruction of the Wigner
function of the Fock state j6� for the realistic parameter
r � 30. By subtracting the exact Wigner function from
the reconstructed one, we also show that the errors intro-
duced by supposing that transitions occur only inside each
selected subspace jg, N� $ je, N 1 1� (perfect selectiv-
ity) are negligibly small.

In conclusion, we have proposed a scheme to implement
a selective interaction in cavity QED, between three-level
atoms, a classical field, and a quantized cavity mode. It
relies on the possibility of tuning to resonance a specific
transition inside a chosen atom-field subspace, while other
transitions remain dispersive, as a consequence of the field
dependent electronic energy shifts. As a first relevant ap-
plication of this scheme, we have proposed a method for
generating large Fock states in the cavity mode. Addition-
ally, we have shown that this scheme allows for the re-
construction of the Wigner function of an arbitrary cavity
093601-3
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FIG. 3. Plot of the reconstructed Wigner function of the Fock
state j6� with the use of the selective scheme (above) and its
difference to the exact one (below). The value of the parameter
r was set to r � 30.

field state, with simplified experimental setup. Many other
application examples could be imagined, especially those
exploring the entanglement created between the atoms and
different field states, as is the case in quantum logic and
quantum communication schemes.
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