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We measured the complex electrophoretic mobility m��v� of nanometer-sized particles dispersed in a
lyotropic lamellar phase, and observed two relaxation processes corresponding to the two characteristic
lengths of lamellar structure. Faster relaxation is caused by the distortion field of lamellar phase induced
by the colloidal particles, and slower relaxation is presumably due to the defects in lamellar structure.
Since the dynamic transport property is strongly influenced by the microscopic circumstances as shown
in this paper, this method is referred to as electrophoretic microrheology.
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In recent years, a number of techniques referred to as
microrheology have been developed to measure the visco-
elastic properties of soft materials on a micrometer scale
[1]. The experimental methods of microrheology can be
generally classified into two categories. One measures
the light scattered from many particles embedded in soft
materials with dynamic light scattering or diffusing wave
spectroscopy. The other measures the local viscoelastic
property of soft materials by probing the motion of a single
particle with particle tracking optical microscopy or laser
interferometry. These studies are motivated to investigate
the local inhomogeneity in such systems as living cells,
gels, and other complex systems. In most cases, however,
the minimum size of a probe particle is limited by the
diffraction of light or the strong scattering from the bulk
media.

In this paper, microscopic viscoelasticity of complex
fluids is obtained from the complex electrophoretic mo-
bility of nanometer-sized probe particles. This method re-
ferred to as electrophoretic microrheology is applied to a
lyotropic lamellar phase of a nonionic surfactant. The lyo-
tropic lamellar phase is made of periodic stacks of bilayers
and solvent, and its structure is considered to be mainly
stabilized by the steric interaction between the fluctuat-
ing and colliding membranes. On the other hand, lamellar
phase loses orientational order in macroscopic scale, and
three-dimensional packing of crumpled membranes needs
topological defects which may also slowly fluctuate with
time by formation and extinction. The aim of this Letter
is to study the effect of structure and fluctuation of such
dynamically stabilized lamellar on the dynamical transport
properties of small embedded inclusions.

Complex electrophoretic mobility m��v� is a frequency
dependent response function defined as the ratio of veloc-
ity of a particle to an applied sinusoidal electric field [2].
According to the Smoluchowski equation extended to the
frequency domain, the mobility m��v� is simply propor-
tional to the inverse of the complex viscosity of bulk sol-
vent h��v� as m��v� � ´z�h��v�, where z is the zeta
potential of colloidal surface and ´ is the permittivity of the
surrounding solvent. Therefore, when the intrinsic mobil-
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ity of a probe particle is independent of frequency, m��v�
offers information on the local viscoelastic property of the
solvent surrounding the particle.

The wide band spectrum of m� is measured by a re-
cently developed method with a heterodyne technique of
quasielastic light scattering under a sinusoidal electric field
[3]. Since the translational motion of colloidal particles
induces the phase shift w of the scattered electric field
relative to that of the reference light, the intensity of the
detected signal is modulated by cosw. Under a sinu-
soidal electric field E0 cosvt, the phase shift w has two
components. One is a randomly fluctuating part wB due
to the Brownian motion, and the other is a sinusoidally
modulated part wE � qmE0 sin�vt 1 d��v due to elec-
trophoresis, where q is the component of the scattering
wave vector parallel to the electric field and d is the phase
delay to the electric field. Therefore, the intensity of the
detected light Iout is given as a sum of the harmonic fre-
quency components of v [3],

Iout ~ coswB

(
J0�z� 1 2

X̀
k�1

J2k�z� cos�2k�vt 1 d��

)

1 2 sinwB

X̀
k�1

J2k21�z� sin��2k 2 1� �vt 1 d�� ,

(1)

where z � qmE0�v and Jk�z� is the Bessel function of
the kth order. In Eq. (1), we consider only one particle as
a scatterer for simplicity without loss of generality. It is
to be noted that the amplitude of each harmonic compo-
nent, J2k�z� coswB or J2k21�z� sinwB, randomly fluctuates
with time at about its averaged value of zero. In the mea-
surement of m�, this fluctuation of the signal intensity can
be removed by squaring the fundamental or second har-
monic component of v, which is extracted from the signal
beforehand with a bandpass filter. The magnitude m is ob-
tained from the ratio of these signals J2

2 �z��J2
1 �z�, and the

phase delay d is directly obtained by a two-phase lock-in
amplifier.

Since the applied electric field does not induce the
translational motion of surrounding bulk media, m� of
© 2001 The American Physical Society 088104-1
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probe particles can be extracted even under the strong scat-
tering from background. This advantage of our method
enables us to use the particles smaller than the characteris-
tic length scale of soft materials (intermembrane distance
of lyotropic lamellar in this study). Therefore, m� or h�

measured by electrophoretic microrheology reflects the
mesoscopic structure of complex fluids or microscopic
circumstances for probe particles where the assumption of
continuum viscoelasticity is broken.

We measured the complex electrophoretic mobility
m��v� of polystyrene latex particles with a diameter of
2a � 42 nm (Dow Company, Ltd.) dispersed in a dilute
lamellar phase of the n-dodecyl pentaethyleneglycol
monododecylether �C12E5�/1-hexanol/water system [4,5].
A sample is filled in a cylindrical cell and the distance
between parallel plate electrodes in the cell is 5 mm. The
volume fraction fm of bilayer membrane made up of
C12E5 and hexanol is determined by taking into account
the solubility of hexanol in water (�0.3%). It is verified
in advance that the mobility m� of the latex particles
dispersed in the aqueous phase of C12E5 at critical
micellar concentration and 0.3% hexanol is independent
of frequency in the range we studied. Its magnitude m0

is 5.7 3 1028 N m�C s and is in good agreement with
the dc electrophoretic mobility measured with ELS-800
(Otsuka Electric).

We used the measured value of membrane thickness
dm � 3 nm for our sample [4] to obtain the interbilayer
spacing d from the simple swelling law of lyotropic lamel-
lar phase, d � dm�fm. The sample is prepared in the con-
centration range 0.02 , fm , 0.06 (50 , d , 130 nm)
to satisfy the relation d . 2a so that the colloidal particles
are homogeneously dispersed between membranes. The
total amount of latex particles (about one-tenth of a per-
cent or less) added to the lamellar sample is small enough
to satisfy the condition c ø 1�d3, where c is the number
density of colloidal particles. Therefore, the interaction
between particles is negligible in such a dilute dispersion.
Since the amplitude of the displacement of a particle due
to electrophoresis is much less than d, it has little influence
on the lamellar structure.

Figure 1 shows the frequency spectrum of m� obtained
in a lamellar phase at fm � 4.7%. There are two relax-
ation modes in the spectrum and the respective relaxation
frequencies are named fL and fH , as shown in Fig. 1. We
divide the frequency spectrum into three regions by fL

and fH as regions I, II, and III from the higher frequen-
cies. Hereafter, the values of the mobility m, diffusion
coefficient D, and drag coefficient g at the plateau in the
respective regions are denoted by the subscripts I, II, and
III. The solid lines in Fig. 1 are the best-fitted curves of
the sum of two relaxation spectra with the relaxation time
tL�� 1�2pfL� and tH�� 1�2pfH �,

m��v� � �mI 2 mII�
ivtH

1 1 ivtH
1 mII

ivtL

1 1 ivtL
,

(2)
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FIG. 1. Frequency dependence of complex electrophoretic mo-
bility m� of latex particles dispersed in a nonionic lamellar phase
of the C12E5/hexanol/water system (fm � 4.7%). The solid
lines are the best-fitted curves of Eq. (2).

where tH � 1.7 3 1024 s, tL � 6.6 3 1022 s, mI �
1.5 3 1028 C m�N s, and mII � 9.2 3 1029 C m�N s.
The mobility mI and mII are considerably smaller than m0
measured in an aqueous phase without lamellar structure.

Since there is enough free space for the electric double
layer around probe particles, it is assumed that electro-
kinetic properties of the latex particles are not influenced
by the presence of membranes. Therefore, the observed
frequency dependence of m��v� is ascribable to the relax-
ation of microscopic viscoelasticity of surrounding media
caused by the potential barriers due to some interaction
between probe particles and media. In this case, the
relaxation time t is written as tH�L� � L

2
H�L��2DI�II� �

gI�II�L
2
H�L��2kBT , where LH�L� is the size of the potential

barrier determined as an amplitude of fluctuation of probe
particles in the potential barrier for faster (slower) relax-
ation. Since the drag coefficients gI and gII are given
from the measured mobility by gI�II� � 6ph0am0�mI�II�,
where h0 is the viscosity of the aqueous phase, we can esti-
mate the size L of the potential barrier as L �

p
2kBTt�g,

which is 33 nm for the high frequency relaxation and
500 nm for the low frequency relaxation.

In the lamellar phase composed of nonionic surfactant,
there are two characteristic length scales, as schemati-
cally shown in Fig. 2 [6]. One is the mean distance j

between the points, where a membrane collides with its
neighboring membranes and is roughly estimated as j �p

k�kBT d, where k is the mean curvature elasticity of a
single membrane. The other is the persistent length of the
orientational order of a membrane l and is estimated as
b exp�2pk�kBT�, where b is a short-distance cutoff of
the order of a molecular length. In the sample we studied,
j is almost equal to d if we use the reported value k �
0.8kBT [4] and l is about 500 nm if we regard b as
dm. Therefore, two characteristic lengths of the potential
088104-2
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FIG. 2. Schematics of probe particles of radius a dispersed in
a lyotropic lamellar phase with layer distance d. The length l
is the correlation length of the orientational order of membranes
and j is the longest wavelength of the free fluctuation of a
membrane.

barrier estimated from the experiment are found to corre-
spond to the characteristic size of the lamellar structure
j0 � j�2 (�32 nm at fm � 4.7%) and l. This means
that the potential barrier formed by flexible membranes
traps colloidal particles within these length scales. It is to
be noted that j0 is a reasonable estimation for LH .

Before we go into a detailed discussion of each relax-
ation process, we discuss the electrical property of lamel-
lar phase. Since lamellar phase can be regarded as a series
circuit of an insulating membrane and conducting aque-
ous phase, dielectric response of lamellar phase shows
Maxwell-Wagner relaxation, and the relaxation frequency
is about hundreds of kHz for our sample [7]. Therefore, at
frequencies lower than this relaxation where we measured
the complex electrophoretic mobility of probe particles, the
electric field is parallel to membranes. That is why we
guess tentatively that the trapping site for the faster relax-
ation is not the interbilayer spacing d but the free space
between collisions of membranes j.

At the highest frequencies (region I), colloidal particles
can freely diffuse within the extent of j, and drag coef-
ficient gI is directly given by the observed mobility by
gI � 6ph0am0�mI. The open circles in Fig. 3 show the
1�j0 dependence of the ratio of g0�� 6ph0a� to gI. The
obtained value of gI is always larger than g0 and increases
with fm due to the confinement of particles between mem-
brane walls. The drag coefficient for a spherical particle
near a hard boundary wall under no-slip conditions was
calculated for infinite parallel plates separated by a dis-
tance 2j0 (solid curve in Fig. 3) or an infinite cylinder with
radius j0 (dotted curve in Fig. 3) [8]. These are calculated
only for a particle restricted to move on the center line of
each wall, but it is experimentally known that the posi-
tion dependence of g0�gI is not so large, except for the
particles attached to the wall [9]. The excess stress ex-
perienced by a moving particle can be roughly discussed
by the geometry of the surrounding wall. There is two-
dimensional free space for a probe particle in a slit be-
tween parallel flat plates, but there is only one dimension
in a cylinder. If it is considered that the bilayer membrane
is not a flat wall and a colliding point of membranes also
disturbs the flow field as shown in Fig. 2, it is reasonable
088104-3
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FIG. 3. Half of the interlamellar space j0�� d�2� dependence
of the ratio of drag coefficient g0�gI calculated from mI (open
circles) and from relaxation time tH (closed circles). j0 is
calculated from the volume fraction fm by the simple swelling
law. The solid curve and dotted curve are theoretical values
calculated for the spherical particles in between parallel walls
and in a cylindrical wall, respectively.

that experimental data situate between the two theoretical
curves. Therefore, it can be said that the drag coefficient
in a nanometer-sized structure is still roughly estimated
from continuum hydrodynamics, and there is no relaxation
process at frequencies higher than the measured frequency
region.

At the lower end of frequency region I, a faster relax-
ation process arises due to the trapping potential of size
LH . Since the relaxation time of the faster relaxation pro-
cess is written as tH � L

2
H �2DI � gIL

2
H�2kBT , gI can

be also estimated from tH as gI � 2kBTtH�j
2
0 by assum-

ing LH being equal to j0. The values of g0�gI calculated
by this method are plotted as closed circles in Fig. 3 and
approximately agree with the open circles obtained without
any assumption. It is to be noted that we have implicitly
made another assumption that the trapping site for faster
relaxation is stable for a time longer than tH .

At the middle frequencies (region II), colloidal particles
weakly confined within the length between the colliding
points of membranes need to hop from trapping site-to-site
to diffuse longer distance. However, colloidal particles
may diffuse without hopping if the membrane collision
disappears with time by itself. Such a process is called dy-
namic disorder transport [10]. When this transport process
is taken into account, the theoretical spectrum of mobility
m��v� is rewritten as

m��v� � m0 1 Dm
tf�1 1 ivtm�

tf 1 tm 1 ivtftm
, (3)

where tm � hj3�k is the reorganization time of the trap-
ping site, which is the relaxation time of fluctuation for a
free membrane of size j [11], tf � haj2�kBT is the time
required for probe particles to diffuse j, and Dm is the in-
crement without dynamic disorder process. From Eq. (3),
mII�mI is roughly written as

mII

mI
�

m0 1 Dm�tf��tf 1 tm��
m0 1 Dm

, (4)
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which is a monotonous increasing function of membrane
concentration fm. However, experimental values of
mII�mI are rather a decreasing function of fm, as shown
in Fig. 4. This discrepancy indicates that the dynamic
disorder process has a little influence on the diffusion of
particles.

Recently, Sens et al. theoretically derived a static distor-
tion field caused by particulate inclusions in lyotropic la-
mellar phase [12]. According to their theory, the in-plane
size of the distortion for the membrane neighboring an
inclusion is almost the same as the interbilayer spacing.
Therefore, at a concentrated solution where tm , tf , la-
mellar phase has enough time to form this distortion field.
Even in this case, probe particles can freely fluctuate in
the length of the mean distance of a membrane collision,
but they have to drag the distortion field to diffuse the
longer length. It is easily shown that excitation energy
DE is of order kBT and has little concentration depen-
dence if there is no specific interaction between membrane
and probe particles other than steric interaction. Experi-
mentally, a reasonable value of 0.4kBT for DE is obtained
from mII�mI � exp�2DE�kBT�. At lower concentra-
tions, on the other hand, probe particles diffuse out rapidly
by finding a free path in the colliding membrane before the
membrane distorts; that is why mII�mI increases in dilute
solution.

At the lowest frequencies (region III), m� decreases to
zero and almost all the particles are trapped within the do-
main of size l. The sizes of the potential barrier estimated
from tL and mII as LL �

p
2kBTtL�gII agree well with

the persistent length of orientation at the concentrated solu-
tion (fm � 4.7% and 5.9%), but it becomes longer as fm

decreases. Although this slower relaxation mode is pre-
sumably related to microscopic defects joining one bilayer
to the other, it is also necessary to measure gIII for various
conditions to clarify the detailed mechanism of the slower
relaxation process. However, gIII is not obtained from
the frequency spectrum of m� since mIII is almost zero.
Therefore, it must be determined by some other method.
Probably, gIII can be determined from the self-diffusion
coefficient of probe particles in this region, DIII, which is
possible to measure by a slight modification of our experi-
mental system [3].

In conclusion, we studied the spectrum of the complex
electrophoretic mobility m� of nanometer-sized colloidal
particles dispersed in a nonionic dilute lamellar phase and
observed two relaxations corresponding to the two charac-
teristic lengths of lamellar structure. The developed tech-
nique, called electrophoretic microrheology, enables us to
measure the spectrum of m� of probe particles which re-
flects the local structure and viscoelasticity of surrounding
media. The advantage of this technique is its availability
of a probe particle smaller than the characteristic size of
088104-4
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FIG. 4. Concentration dependence of the ratio of the com-
plex electrophoretic mobility in the frequency regions I and II,
mII�mI.

structure in complex fluids. It is expected that the transport
properties obtained in this study might throw new light on
the transport phenomena in much more complex systems
such as biological cells and so on.
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