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We investigate an asymmetric zigzag spin ladder with different exchange integrals on both legs using
bosonization and renormalization group approaches. When the leg exchange integrals and frustration
both are sufficiently small, renormalization group analysis shows that the Heisenberg critical point flows
to an intermediate-coupling fixed point with gapless excitations and a vanishing spin velocity. When
they are large, a spin gap opens and a dimer liquid is realized. Here, we find a continuous manifold of
Hamiltonians with dimer product ground states, interpolating between the Majumdar-Ghosh and sawtooth
spin-chain model.
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The interplay of geometric frustration and quantum fluc-
tuations, and eventually broken translational invariance, in
low-dimensional spin systems gives rise to novel magnetic
phases. Examples include spin chains with interactions
beyond nearest neighbors, spin ladders, triangular, and
Kagomé systems [1]. Spin ladders, in particular, have at-
tracted much interest and several model problems are well
understood [2] and highlight the role played by frustra-
tion. Spin-isotropic two-leg ladders with railroad geometry
quite generally lead to a singlet ground state separated by a
finite excitation gap from the first triplet states [2]. Zigzag
ladders are more strongly frustrated and, depending on the
ratio of the leg to rung exchange integrals, may have gap-
less spin liquid ground states or gapped dimer states [3].
Compounds such as Cu2�C5H12N2�2Cl4 and CuGeO3 have
been suggested to be described as railroad and zigzag lad-
ders, respectively [4].

Little work has been done on asymmetric spin ladders
where the exchange integrals on both legs differ. Only the
extreme case where one leg of a zigzag ladder is missing
entirely (sawtooth or D chain) has been solved [5,6]. The
ground state of this model is a product of nearest-neighbor
(NN) singlets and there is a spin gap, as in the Majumdar-
Ghosh (MG) model [7]. The properties of the excitations
in both models are different, however. Sawtooth chains
may describe the material YCuO2.5 [5,6]. Here, we per-
form a systematic study of asymmetric zigzag spin ladders.
Important questions concern possible new phases genera-
ted by the leg asymmetry, their excitation spectra, and
their physical properties, as well as quantitative changes
brought about by leg asymmetry to the excitations in the
more usual phases found on zigzag ladders (spin liquid,
Néel, and dimer states).

We consider a Heisenberg model on the structure shown
in Fig. 1, and represent this as a chain with an alternating
next-nearest-neighbor (NNN) exchange

H �
X

l

�J1Sl ? Sl11 1 �J2 1 �21�ld� Sl ? Sl12� , (1)

where J1 � 1 and J2 6 d are the NN and alternating NNN
coupling constants, respectively.
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d � 0 is the ordinary zigzag ladder or frustrated spin
chain [3], and fixing in addition J2 �

1
2J1 gives the exactly

solved MG model [7]. The sawtooth chain has d � J2 �
1
2 J1 [5,6].

Following the general approach to map the quantum
spin model to a continuum field theory [8] and using the
standard dictionary of Abelian bosonization [9], we obtain
an effective boson Hamiltonian H � H0 1 H1 with

H0 �
Z

dx
u

2p

∑
K�pP�2 1

1
K

�≠xF�2

∏
, (2)

H1 �
Z

dx

∑
g3

2�pa�2
cos4F 1

g1

p2a
�≠xF� cos2F

∏
.

(3)

F�x� is a bosonic phase field and P�x� its canonically
conjugate momentum. u and K are the effective spin ve-
locity and coupling constants, including the effects of mar-
ginal interactions. a is a short-distance cutoff, g3 ~ 1 2
J2�J2c is the Umklapp-scattering amplitude, and g1 ~ d

is the amplitude of the alternating NNN field. In this pa-
per, we consider only the case J1�2 $ J2 . d, while, for
J2 . 0.5J1, quite different field theory treatments are re-
quired [10,11].

For d � 0, the model (1) is well understood [3]. Its
elementary excitations are spinons which are gapless
for J2 , J2c � 0.2412 [4] when frustration is irrele-
vant and the ground state is unique, or gapped for

J2−δ

J2 δ+

J1

FIG. 1. The asymmetric zigzag spin ladder.
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J2 . J2c when frustration is relevant and the ground
state is doubly degenerate. In the field theory (2), (3),
this translates into the g3 term being either marginally
irrelevant, leading to the weak-coupling Heisenberg fixed
point (K �H� � 1�2, g

�H�
3 � 0� [8], or relevant, yielding a

strong-coupling dimer state. When the SU(2) spin sym-
metry is broken, a Néel state or an easy-plane spin liquid
may form. Introducing dimerization, i.e., an alternating
J1, produces an effective confining potential between
the spinons. The elementary excitations become a spin
triplet and a spin singlet above the unique ground state.
In the language of field theory, the external dimerization
corresponds to a relevant term sin2F which lifts the
double degeneracy of the dimer ground state [12].

Qualitative results on the influence of the new interaction
(g1� can be obtained from physical considerations alone.
First, the scaling dimensions of the Umklapp and nearest-
neighbor alternation terms g3 and g1 are

dg3 � 4K, dg1 � K 1 1 . (4)

At the Heisenberg fixed point, g3 is marginal with dg3
� 2,

while the g1 term with dg1 � 3�2 is relevant. We conclude
that g1 destabilizes the isotropic Heisenberg fixed point and
the spin liquid ground state. On the other hand, there is no
standard strong-coupling theory for the g1 term. Usually
(e.g., g3 ! 6`), the boson field F�x� locks into a constant
value with small fluctuations, and an associated excitation
gap. Such a phase locking, however, is forbidden by the
≠xF prefactor to the cos�2F� term in H1. Second, the g1

term, induced by the alternating NNN interaction, does not
confine the spinons and plays a role very different from the
external dimerization, as can be checked in the dimer state
by comparing the sawtooth chain [5,6] with the MG model
[7]. Moreover, from differences in the size of the spin
gaps in these two models, it follows that the g1 term quite
generally counteracts the Umklapp term while an external
NN dimerization would cooperate.

That g1 opens no spin gap despite being a relevant per-
turbation of the Heisenberg fixed point is also corroborated
by the absence of a magnetization plateau in our model
in small magnetic fields [13]. A necessary condition for
the formation of a magnetization plateau in the absence
of modulated external fields is an alternating component
of the exchange integrals [14,15]. For an alternating NN
exchange, a magnetization plateau is observed in small
magnetic fields, but alternating NNN exchange is observed
only in high fields [13,15].

We now perform a perturbative renormalization group
(RG) analysis by mapping the model on a modified (by g1)
classical 2D XY model [16,17]. Introducing the reduced
variables y3 � g3�pu and y1 � g1�

p
2 pu, we obtain the

linearized RG equations

dK

dl
� 2y2

3K2 1 y2
1K4, (5)
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dy3

dl
� �2 2 4K�y3 1 K2y2

1 , (6)

dy1

dl
� �1 2 K�y1 2 4K2y1y3 , (7)

du

dl
� 2

1
2

uy2
1 �1 1 K�K2 (8)

under a change of length scale a ! aedl. These equa-
tions, and our solutions to be discussed below, can also
accommodate anisotropy in the NN and NNN exchange
integrals. The RG equation for the spin velocity u is
a consequence of the anisotropy of the g1 interaction
in the classical 2D XY model, i.e., its nonretarded but
nonlocal character in the quantum field theory (3), and
has been discussed before in the 1D electron-phonon
problem [18]. For y1 � 0, one finds the three generic
phases discussed earlier [3]: (i) a weak-coupling spin
liquid phase �g�

3 � 0, K� $ 1�2� terminating at the
isotropic Heisenberg fixed point K�H� � 1�2; (ii) a
strong-coupling Néel phase g�

3 ! `; (iii) a strong-
coupling dimer phase g�

3 ! 2`. Moreover, u is not
renormalized for y1 � 0. Spin-rotation invariant models
scale along the separatrix between Néel and spin liquid
phases, or along its continuation into the dimer regime.

Taking y1, the most relevant perturbation, finite, changes
this simple picture. Quite generally, the corrections to the
RG flow of K and g3 are positive, while those from g3 are
negative. In the spin liquid phase, close to the isotropic
Heisenberg fixed point, the alternating NNN exchange will
increase both K and y3, and therefore reverse the direction
of the RG flow, compared to the y1 � 0 situation. The
sign of this effect agrees with the spin gap reduction in
the dimer phase when going from the MG to the sawtooth
model. The magnitude of the effect is a direct consequence
of the scaling dimension dg1

. Figure 2 shows a family of
solutions of the RG equations, projected on the y3-K plane,
which have been linearized for the purpose of the figure to
accurately control spin-rotation invariance (cf. below).

The flow reversal is seen in much of the first quad-
rant. When K is increased sufficiently by y1, this per-
turbation becomes irrelevant, however, and the RG flow
bends back to a weak-coupling fixed line �K� $ 1, y�

3 �
0, y�

1 � 0�, describing a spin liquid with an increased
easy-plane anisotropy. Its spin velocity u is decreased
but remains finite.

More interesting is the spin-rotation invariant line ( y3 �
4K 2 2 in the linearized RG). While the initial flow
towards the Heisenberg fixed point also reverses its direc-
tion under the influence of y1, it reaches a new finite-
coupling fixed point �K� 	 0.578, y�

3 	 0.315, y�
1 	

60.544�, respectively �K� � 0.6, y�
3 � 0.4, y�

1 � 60.8�
in the linearized RG. This fixed point is attractive for
spin-rotation invariant systems, and repulsive otherwise
with a flow into the spin liquid or Néel phases for
easy-plane (easy-axis) anisotropy. At the fixed point,
087205-2
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FIG. 2. The scaling trajectories for y1�l � 0� � 0.001 pro-
jected on the y3-dK plane. dK � K 2 1�2, and the dot locates
the new intermediate coupling fixed point. The Néel state is re-
alized in the upper left, the dimer state in the lower left, and
the spin liquid in the right part of the figure. The star locates
the boundary between flows to the new fixed point and into the
dimer regime.

the renormalized spin velocity vanishes, u� � 0. This
conclusion follows from Eq. (8) and is independent of
the exact value of the fixed point as long as it is located
on the RG separatrix with 1�2 , K , `. Consequently,
conformal invariance is broken, and we do not expect
power-law decay of the correlation functions. Thermo-
dynamic properties will be different from a Heisenberg
chain: the specific heat will show nonlinear temperature
dependence, and the magnetic susceptibility will depend
on temperature. This state is significantly different from
the Luttinger-type spin fluid state of the Heisenberg
model. The fixed point Hamiltonian can be rewritten
as H� � u�H �K�, g�

1 , g�
3 � where H is independent

of u�. It becomes trivial, H� � 0, at the fixed point
because u� � 0. We interpret this as our spins effectively
decoupling at the lowest energy scales, i.e., a kind of
asymptotic freedom in this spin-rotation invariant ladder.

From standard arguments, we find that the elementary
excitations in the fixed point, spinon and antispinon, are
still gapless. One can also provide a variational argument,
based on an effective Hamiltonian H1, Eq. (3). Minimiz-
ing its energy directly produces pairwise kink and antikink
solutions corresponding to the elementary excitations with
energies proportional to g3, respectively, g1. Including the
quantum fluctuations from H0 is expected to delocalize
these kinks and reduce their energies further. Using now
our fixed point properties g1,3 � y�

1,3u�, u� ! 0 makes
the excitation gap vanish at the fixed point. Also, the nu-
merical results of Wiessner et al. [13] indicate a paramag-
netic susceptibility.

A natural question arises here: Is this intermediate fixed
point stable against higher-order perturbations? Our an-
swer is positive although we do not attach any particu-
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lar significance to the numerical values of the coupling
constants, which may change as higher-order corrections
are included. Its location on the RG separatrix between
the Néel state and the easy-plane spin liquid is protected
by spin-rotation invariance and it can be pushed neither
back to the Heisenberg fixed point nor to strong coupling,
K ! `, by higher-order operators. The first option is
inconsistent with the scaling dimensions, the second one
would correspond, in the fermion language, to long-range
pairing order which is excluded in 1D. Scaling into the
dimer regime is inconsistent with the absence of a magne-
tization plateau [13].

Care should be taken when comparing these predictions
to results, e.g., from exact numerical diagonalization on
small clusters (size N). The finite system size will stop the
RG flow at a scale lN � lnN , and the fixed point �l ! `�
is not reached. However, Eqs. (5)–(8) predict a spin ve-
locity decreased significantly by the alternating component
of the NNN exchange, with an unusual size dependence
which can be evaluated by integrating the RG equations up
to lN . Because of the scale dependence of the renormaliza-
tion, the finite-size spectrum likely exhibits significant
nonlinear corrections which, again, are size dependent.
The velocity renormalization also suggests a scale depen-
dence of the magnetic susceptibility. A direct solution of
our model in a magnetic field is rather involved, however,
because higher-order terms lead to a field-induced gen-
eration of new, relevant operators. This will be reported
later.

Of course, when J2 increases beyond a critical value
J2c�d� now depending on the exchange alternation, the RG
flows to a strong-coupling fixed point, which corresponds
to the quantum dimer phase. For y1 � 0.001, this critical
point is indicated in �K, y3� coordinates in Fig. 2 by a
star. For small d and J2 . J2c�d�, our RG equations show
that the spin gap is decreased by increasing d, but the
system will remain in the universality class of the dimer
liquid.

However, we do not expect that the field theory descrip-
tion is very precise for J2 near the MG point J2 � 0.5J1.
The main reason is that the correlation length, which is
proportional to the inverse of the energy gap, decreases
quickly when J2 increases much beyond J2c�d�. To access
this limit, we now discuss the influence of NNN exchange
alternation on the ground state and excitations of the
Majumdar-Ghosh model. For the MG model [7], the two
linearly independent ground states, say, left or right dimer
ground state, are products of nearest-neighborly singlets,
respectively,

jFL
 �
Y

l�odd

�l, l 1 1�, jFR
 �
Y

l�even

�l, l 1 1� ,

(9)

where �i, j� � ��"�i�#�j 2 �#�i�"�j��
p

2 denotes the singlet
combinations of spin i and j. Equation (9) also represents
the degenerate ground state of the sawtooth model [5,6].
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How are these models connected? We notice that NNN
exchange alternation does not modify the product states of
nearest-neighbor singlets

Hd jFL,R
 �
X

�21�ldSlSl12 jFL,R
 � 0 . (10)

Furthermore, we can prove that introducing NNN ex-
change alternation into the MG model, or changing
it in the sawtooth chain, will not affect their ground
states. There is thus an entire manifold of Hamiltonians,
parametrized by d with J1 � 2J2 fixed, with doubly
degenerate NN-dimer product ground states jFL,R
. This
kind of ground state attracted much attention recently for
the experimental realization of SrCu2�BO3�2 as the 2D
Shastry-Sutherland model [19,20].

While in these models, the focus is on the ground state,
and we also can characterize the elementary excitations as
kinks and antikinks with finite excitation energies and dif-
ferent dispersions in the dimer state of our ladder. Starting
from the MG model, the kinks can be thought of as do-
main walls separating the different dimer ground state con-
figurations. From symmetry considerations, the kink and
antikink properties are identical in the MG model. With
alternating NNN interaction, the symmetry between legs is
broken; some properties will differ between kinks and an-
tikinks, in particular, the dispersions. However, they still
survive as the elementary excitations of the asymmetric
spin ladder system. The alternating NNN interaction does
not serve as a confining potential for the kink and antikink,
but changes the energy gap of the excitations. Based on the
cluster variation method [5,6], our numerical estimates in-
dicate that the gap decreases from 0.234 in the MG model
to 0.219 in the sawtooth chain with increasing d, while the
ground state remains invariant. Particularly, for d � J2,
i.e., the sawtooth chain, the kink excitation is exactly a
single spin on an odd site and dispersionless, while an an-
tikink is still a domain wall propagating with an effective
mass [5,6].

The preceding results can also be understood from the
point of view of the corresponding field model. The pres-
ence of the g1 term ≠xF cos2F does not lift the degen-
eracy of the dimer ground state, which is the constant
solution minimizing the energy of the Hamiltonian with
the g3 term. Near the strong-coupling dimer fixed point,
the g3 term is much more relevant than the g1 term. In
this case, the soliton solutions of the cos4F sine-Gordon
equation will survive. However, the g1 term, although it is
much less relevant than the g3 term, gives different masses
to the sine-Gordon kink and antikink solutions. This give
us a rough explanation of the asymmetric kink and antikink
excitations in the presence of alternating NNN coupling.
The difference in (numerically determined) gap size be-
tween the MG and the sawtooth chains, is consistent with
our RG results on the influence of d for smaller J2, on the
spin gap magnitude.
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Spin-isotropic, asymmetric zigzag ladders are described,
in the limit of weak frustration, by an intermediate cou-
pling fixed point with gapless excitations and a vanishing
spin velocity, likely indicating a decoupling of the spins
at low energy scales. For larger frustration, a more usual
dimer liquid phase is realized whose spin gap decreases
with increasing leg asymmetry. A continuous manifold of
Hamiltonians with the same singlet product ground state
interpolates between the Majumdar-Ghosh model and the
sawtooth spin chain. In addition, we find gapless spin liq-
uid and gapped Néel states with easy-plane and easy-axis
anisotropy. Extensions we currently consider include ex-
ternal fields and doping with charge carriers.
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