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The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explic-
itly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers,
and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt
interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers.
Although the strength of microscopic interactions changes monotonically with decreasing temperature,
the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of
the modulation period through various phases. Increased chirality changes the phase sequence.
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Chiral polar smectics are materials which form layered
phases. In these phases the average direction of elongated
molecules is tilted for an angle with respect to the layer
normal. Smectic layers are spontaneously polarized in the
plane of the layer and perpendicular to the direction of
the tilt [1]. Among these polar smectics the most widely
experimentally and theoretically studied materials are fer-
roelectric liquid crystals. Ten years ago in an attempt to
synthesize ferroelectric liquid crystals with larger polariza-
tion, antiferroelectric liquid crystals were discovered [2].
Their synthesis stimulated extensive experimental research
which resulted in the discovery of many new polar liquid
crystalline phases. In all phases molecules are tilted with
respect to the layer normal and tilt direction is modulated
along the layer normal. The modulation period was shown
to vary nonmonotonically with decreasing temperature [3]
from a few layers in the Sm C�

a phase, to a few hundred
layers in the Sm C� phase, where tilts in neighboring lay-
ers are almost parallel, i.e., synclinic, to approximately
four layers in the Sm C�

FI2 phase, to approximately three
layers in the Sm C�

FI1 phase, and to approximately two lay-
ers in the Sm C�

A phase at low temperatures where tilts in
neighboring layers are almost antiparallel, i.e., anticlinic.

Antiferroelectric liquid crystals can be theoretically de-
scribed by continuous models [4–6] that predict only two
of the experimentally observed phases, the ferroelectric
Sm C� phase and the antiferroelectric Sm C�

A phase. Dis-
crete models [7–9] take interlayer interactions between the
tilt vectors explicitly into account. The model [7], later
called the clock model [3], considers competing interac-
tions between tilts in nearest layers and in next-nearest
layers and predicts various structures where the direction
of the tilt varies uniformly from layer to layer.
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Within this model the observed nonmonotonic tempera-
ture dependence of the modulation period can be repro-
duced only with nonmonotonic temperature dependences
of model parameters, which cannot be understood from
microscopic interactions. Although the model can pre-
dict structures of the Sm C�

FI2 and of the Sm C�
FI1 for

the specific set of clock model parameters, these phases
cannot exist as stable phases in a broader temperature
interval. For this some synclinic interactions would be
needed between the third- and between the fourth-nearest
layers [9].

In this Letter we present the model where the polariza-
tion of smectic layers is taken explicitly into account and
is treated as a secondary order parameter to the tilt. In ad-
dition to the steric and van der Waals interactions to the
nearest layers between the tilt vectors we consider also
piezoelectric and flexoelectric couplings between the tilt
and the polarization and electrostatic interactions between
the polarizations of the nearest layers and polarizations
with the next-nearest layers [10].

To describe the structure of phases, we introduce the
tilt vector jj which gives the magnitude and the direction
of the tilt in the jth smectic layer and the polar order
parameter hj � �hjx , hjy �, which gives the magnitude and
the direction of the in plane transverse polar order in the jth
layer. Polar order h is induced by the tilt and it is therefore
improper order parameter. The spontaneous polarization
in the jth layer is proportional to the polar order h: Pj �
P0hj , where P0 is a layer polarization for a completely
polarly ordered layer [1]. Therefore polar order parameter
h will here shortly be called polarization. We express the
free energy of the smectic system with N layers in simplest
invariant terms of both order parameters as
© 2001 The American Physical Society 085501-1
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Here the first two terms give part of the free energy which
depends on the magnitude of the tilt. Both terms describe
the isolated layer where continuous transition from the
nontilted to the tilted molecular arrangement takes place
at T0 due to intralayer van der Waals interactions. Fac-
toring out the parameter a, we express all model parame-
ters in the units of temperature. Parameter a1 corresponds
to steric and van der Waals interactions between nearest
layers. Steric interactions favor synclinic molecular align-
ment in neighboring layers and give a negative contribu-
tion to a1, while van der Waals interactions favor anticlinic
ordering in neighboring layers and give a positive contri-
bution to a1. The parameter a1 is of the order of a few
degrees Kelvin [8,11]. We believe that steric and van der
Waals interactions are negligible farther than to the near-
est layers. The parameter f1 gives the chiral part of van
der Waals interactions between molecules [12] in neigh-
boring layers and vanishes in racemic mixtures. We as-
sume that f1 is smaller than a1 and it is a few tenths of a
degree Kelvin. The parameter b0 is positive, and both b1
and b2 favor antiparallel dipolar order and are therefore
positive [10]. Electrostatic interactions between neighbor-
ing layers are present only when positional correlations be-
tween molecules exist [13]. Since positional correlations
decrease exponentially we expect that b0 ¿ b1 ¿ b2 and
interactions with more distant layers are neglected. Tran-
sition temperatures from the Sm C� phase to the Sm C�

A
phase are a few degrees lower in nonpolar racemic mix-
tures than in pure samples [2], which suggests that b0 is
also of the order of a few degrees Kelvin. Polarization is
induced in chiral polar smectics by the tilt and the piezo-
electric coupling is given by cp . The parameter cp has
also a chiral character and vanishes in racemic mixtures.
The magnitude of the layer polarization is only one-tenth
of the polarization of a completely polarly ordered sys-
tem [14]; i.e., the magnitude of hj is of the order of 0.1,
which means that also the value of cp is of the order of
a Kelvin. The last term corresponds to the flexoelectric
effect, as it couples nonhomogeneous tilt and the polariza-
tion. The flexoelectric parameter m is of the same order as
cp [15,16].

The part of the free energy Eq. (1), which includes po-
larization explicitly, can be written as

GP � h ? C ? j 1
1
2h ? B ? h . (2)

The tilt vector is a 2N-dimensional vector of the form
j � �j1x , . . . , jjx, . . . , jNx , j1y , . . . , jNy � and similar for
the polarization h. The five-diagonal 2N-dimensional
matrix B gives intralayer and interlayer electrostatic
interactions with elements Bj,j � b0, Bj,j61 �

1
2b1, and

Bj,j62 �
1
8 b2. The 2N-dimensional matrix C gives

the coupling between tilts and polarizations. The off
diagonal elements Cj,j61 � Cj1N ,j1N61 �
1
2 m and

Cj,j1N � 2Cj1N ,j � cp. Minimization of Eq. (2) with
respect to polarization h gives

h � 2B21 ? Cj , (3)

where B21 is the inverse matrix of the five-diagonal matrix
B. As b0 ¿ b1 ¿ b2 we keep in B21 only the terms up to
the second order in b1�b0 and up to the first order in b2�b0.
The elements of B21 are B21
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tilt dependent polarization Eq. (3) into Eq. (2) we obtain
the polar part of free energy as

GP � 2
1
2jC B21Cj , (4)

and the free energy due to interlayer interactions is
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Parameters ãk and f̃k , which appear after polarization
elimination, give effective interactions between tilts. Al-
though direct van der Waals and steric interactions are
significant only to the nearest layers and electrostatic in-
teractions are significant up to the next-nearest layers, ef-
fective interactions are significant up to the fourth-nearest
layers.
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Achiral effective interactions between nearest layers ã1

consist of direct steric and van der Waals interactions (a1),
as well as of indirect interactions due to piezoelectrically
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and flexoelectrically induced polarization. Achiral inter-
actions between next-nearest layers are only indirect and
can be for systems with negligible flexoelectric interactions
(m � 0) either competing [7] (ã2 . 0) or noncompeting
with (ã2 , 0) [17]. The second case leads to the validity
of the continuous bilayer models [4–6], although it seems
that the present experimental knowledge supports this pos-
sibility by a single experimental evidence [17]. In systems
with large flexoelectric interactions (jcpj

b1

b0
, jmj , ã2 is

always positive and competes with interactions between
nearest layers ã1. Indirect effective interactions between
third neighbors are given by ã3. The term is always nega-
tive and favors synclinic tilt directions in interacting layers.
Therefore this term in systems with significant flexoelec-
tric interactions tends to stabilize the structures with three
layer periodicity. Indirect effective interactions between
fourth-nearest layers ã4 can be either negative or positive.

The effective chiral coupling between neighboring lay-
ers f̃1 has two contributions: the van der Waals origi-
nated (f1) and the polarization part which appears due
to the combination of piezoelectricty and flexoelectricity
(cpm�b0). Even systems with negligible direct chiral in-
teractions f1 � 0 are helicoidally modulated. In all pre-
vious models, chiral interactions have always been treated
as weak interactions which induce only slight perturba-
tions in the structure, i.e., helicoidal modulations with very
long periods. In antiferroelectric liquid crystals this is not
always the case. The ratio cpm�b0 can have the value
of a few degrees Kelvin and is comparable to other achi-
ral interlayer interactions. The competition between the
van der Waals part of chiral interactions (f1) and indirect
chiral interactions due to the piezoelectric and the flexo-
electric effect (cpm�b0) can explain the helix unwinding
without polarization reversal as observed in the antiferro-
electric phase of various systems [2,17].

The simplest solution, which minimizes the free energy
Eq. (4) for competing interlayer interactions (ã2 . 0) , is
the clock model solution with the constant phase differ-
ence between neighboring layers over the whole sample
[7]. The tilt in the jth layer is jj � u�cos� ja�, sin� ja��,
where u is constant and the phase difference a is the differ-
ence in directions of the tilt vectors in neighboring layers.
The phase difference a is obtained by the minimization of
the free energy Eq. (4) with respect to a.

We have analyzed the temperature dependence of solu-
tions for the following behavior of model parameters with
decreasing temperature: a1 increases monotonically from
the negative value to the positive value, the piezoelectric
parameter cp monotonically increases, and the flexoelec-
tric parameter m monotonically decreases. Let us con-
sider a microscopic mechanism of the described parameter
dependence with decreasing temperature. The monotonic
increase of direct interactions a1 with decreasing tempera-
ture from a negative value, which is due to interpenetrating
molecules through nearest layers, to a positive value in the
region where van der Waals interactions favor anticlinic or-
der is due to increasing smectic order [18]. The flexoelec-
085501-3
tric coupling (m) decreases monotonically with decreasing
temperature, since the smectic order and hindrance of the
rotation becomes less affected by the molecules above and
below the interacting layer. In contrast, with decreasing
temperature piezoelectric coupling (cp) monotonically in-
creases since higher smectic order strengthens the rotation
hindrance within the layer.

For positive ã2 we can introduce the measure of the
competition — the competition ratio 4ã1�ã2. In racemic
mixtures in the temperature region where the competition
ratio is smaller than 21, the synclinic nonmodulated
Sm C� phase is stable. In the temperature region where
the competition ratio is larger than 1, the anticlinic
nonmodulated Sm C�

A phase exists. In the region in
between, the phase angle a changes with decreasing
temperature rapidly from 0± to 180±, i.e., the modulation
period changes from infinity to two layers. In slightly
chiral systems the Sm C�

a phase appears above the ferro-
electric Sm C� phase. With an additional increase of the
enantiomeric excess or increased chirality of the system
(larger cp), the ferroelectric Sm C� phase disappears,
leaving only a modulated phase with short pitch (Fig. 1).

Experimental observations have shown that in racemic
mixtures only the synclinic Sm C� phase and the anti-
clinic Sm C�

A phase exist with the first order transition
between them [2]. The narrow temperature range of the
modulated phase (Fig. 1—solid line) can be experimen-
tally seen as the first order transition. In chiral samples
two additional phases, the Sm C�

a phase and the Sm C�
g

phase, appear. In chiral systems where piezoelectric cou-
pling cp is important, below the transitions temperature
to the tilted phase, the modulation period is much shorter
and increases with decreasing temperature. The tempera-
ture region where competition ratio is between 21 and 11
becomes wider and can be experimentally observed as a

FIG. 1. Temperature dependence of the phase difference
a. Model parameters change with temperature monotoni-
cally as a1 � �24.1 K 2 3.2T�, cp � x�0.15 K 2 0.16T �,
m � �2.12 K 1 1.32T �. The other values were f � 0 K,
b0 � 2 K, b1 � 0.2, b2 � 0.02. The parameter x gives enan-
tiomeric excess and has the following values: x � 0— solid
line; x � 0.2— dashed line; and x � 1—dotted line.
085501-3
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distinguished Sm C�
g phase. Similar behavior is observed

in chiral samples of MHPOBC [2] and 10OTBBB1M7 [3]
(Fig. 1—dashed line). If piezoelectric cp coupling is still
stronger, the ferroelectric Sm C� phase disappears, which
was observed in some systems [19] (Fig. 1— dotted line).

The symmetry of structures with various a is the same,
since the symmetry operation common to all structures
consists from the translation for a layer thickness and the
rotation for an angle a. If a changes discontinuously, the
temperature range of different phases can be defined by
differential scanning calorimetry or similar measurements.
If transitions are continuous, the temperature ranges of
various phases are defined by changes of the macroscopic
properties and are to some extent arbitrary. The phase dif-
ference a can be used as a parameter which distinguishes
between different phases. In the Sm C�

a phase varies from
a � 10± to 70±, which means that the modulation period
varies from 40 to 5 layers. In the Sm C� phase is a � 0,
i.e., the infinite modulation period in racemic mixtures and
a few hundred layers in pure samples. In the Sm C�

FI2
phase is a � 90± or 4 layers; in the Sm C�

FI1 phase is
a � 120± or 3 layers. In the Sm C�

A phase is a � 180±.
The modulation period is 2 layers and can also be analyzed
within a bilayer model [4–6] where it is treated as a long
double helix.

To conclude, we present the phenomenological model
based on microscopic intralayer and interlayer interac-
tions. Polarization is induced by the piezoelectric and the
flexoelectric effect and is taken into account explicitly.
Although tilts directly interact only with nearest layers and
polarizations interact up to the next-nearest layers, indirect
achiral interactions which tend to stabilize structures
with three layer and four layer periodicities extend to the
fourth-neighboring layers. Chiral piezoelectric couplings
influence also the effective achiral interactions between
nearest layers. Additionally, chiral interactions due to
the flexoelectric effect are important to the third-nearest
layers and can be strong. Direct interactions between
nearest layers correspond to elastic terms in continuous
models. As a consequence of the piezoelectric and the
flexoelectric coupling, the corresponding Lifshitz parame-
ter in continuous models is renormalized. In contrast,
variation of polarization, which is considered as electro-
static interlayer coupling, has no corresponding terms in
continuous models. The large variety of phases in anti-
ferroelectric liquid crystals is a consequence of a delicate
balance between various mechanisms. In chiral samples
all interactions change with temperature monotonically.
But the competition ratio varies nonmonotonically and
therefore also phase difference a; i.e., the modulation
period changes nonmonotonically and the ferroelectric
Sm C� phase with long modulation period can be stable
between two phases (Sm C�

a and Sm C�
FI2) with much

shorter modulation periods.
Within the phenomenological discrete model we stud-

ied only the simplest possible interlayer interactions that
085501-4
can describe nonmonotonic but continuous temperature
dependence of the pitch. The experimentally observed
discontinuous dependences could be a consequence of
the influence of the pitch on the tilt [8] and/or higher
order terms which tend to lock the pitch to three or four
layers or like quadrupolar terms which could induce
quadrupolar ordering and allow for distorted clock model
solutions [20].
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