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The results of the independent hot-spot (IHS) model are compared to those of the underlying stochastic
amplifier in the regime where the coupling of the amplifier is close to its critical value. The considered
case is that of a 1D linear amplifier with at most one hot spot per interaction length. It is shown that
the validity of the critical coupling given by the IHS model depends on the correlation function of the
pump field and should be discussed in each particular case. The discrepancy between the IHS model
and the underlying amplifier is shown to be due to the random fluctuations of the hot-spot field around
its dominant, deterministic, component.
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Much experimental and theoretical work has been de-
voted over the last two decades to studying the influence of
laser beam smoothing on scattering instabilities [1]. In the
case of spatially smoothed beams, such as random phase
plate beams [2], a good idealized model of the physics into
play can be obtained by regarding the laser-plasma system
as a stochastic convective amplifier driven by the modulus
square of a Gaussian field. Unfortunately, even in the sim-
plest linear limit of this model very few exact analytical
results have been obtained so far [3,4]. Among them, the
most important is the concept of critical intensity defined
as the average laser intensity at which the average linear
reflectivity diverges [5], which corresponds experimentally
to a threshold of the instability. Regarding the outcome
of a given experiment, it has been shown in Ref. [4] that
this divergence can be related to a transition from a below-
critical regime, where the backscattered power is uniformly
distributed over the amplifier cross section, to the above-
critical regime, where it is highly nonuniformly distributed.
This result can be used as an alternative definition of the
critical intensity in real systems (and in more realistic non-
linear models) in which there is no divergence of the av-
erage reflectivity.

In order to deal with scattering instabilities of smoothed
beams near and above the critical intensity, a simplified
version of the stochastic convective amplifier model, the
so-called “independent hot-spot model” (or IHS model),
has been developed [5]. In this model, the macroscopic
reflectivity of the plasma is assumed to be mainly deter-
mined by the high overintensities (or hot spots) of the laser
field, randomly distributed in the interaction region. For
the sake of completeness, it should be noticed that beside
the laser-plasma interaction context, models in which the
physics is determined by the occurrence of rare and intense
hot spots are also relevant to the interaction of a smoothed
laser beam with other nonlinear media like, e.g., liquids
and crystals. As examples, one can mention the problems
of optic damaging by a partially incoherent laser, stimu-
lated Brillouin scattering in lens, and stimulated Raman
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scattering in crystals [6]. The IHS model is characterized
by the following three steps.

(i) One neglects multiple amplifications in successive
hot spots. This approximation is valid provided that the
interaction length is smaller than (or comparable to) the
correlation length of the laser field. Such a situation can be
encountered in, e.g., inhomogeneous plasmas in which the
resonance length for a given wave triplet is smaller than (or
comparable to) the hot-spot length. In this limit, multiple
amplifications in successive hot spots can be neglected due
to the fact that the light backscattered in a given hot spot
is out of resonance in any other hot spot it encounters on
its way out of the plasma.

(ii) One approximates each hot spot near its maximum
by a given, i.e., nonstochastic, intensity profile depending
on the correlation function of the laser field and being the
same for each hot spot [7,8]. This approximation follows
from a result of the theory of homogeneous Gaussian fields
stating that in the neighborhood of a high maximum at
x � 0, the random field looks, in probability, like uC�x�
with O�1� random fluctuations, where u is the amplitude
of the maximum and C�x� is the correlation function of
the field [7].

(iii) Finally, one averages over the hot-spot intensity to
obtain the overall (macroscopic) reflectivity.

Although the IHS model has been extensively used since
the seminal work by Rose and DuBois [5,8], the validity
of these approximations has never been addressed, e.g., by
comparing the IHS model results to those of the underly-
ing convective amplifier. In this Letter, we undertake such
a comparison in the simplest case of a one-dimensional
(1D) linear convective amplifier. In this case, the most im-
portant approximation which makes the IHS model much
more tractable than the stochastic convective amplifier is
point (ii).

The starting point of this work is the following reason-
ing: in the linear case, the divergence of the average re-
flectivity, which determines the critical intensity, is due to
the occurrence of hot spots with arbitrarily large juj. For
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these hot spots, the O�1� random fluctuations are negligible
compared to the deterministic part uC�x� and the approxi-
mation (ii) seems to be perfectly correct. Thus, in the case
where the interaction length is smaller than the correlation
length of the laser field [in order for (i) to be fulfilled], one
expects the IHS model to give the exact value of the criti-
cal intensity. We show in the following that this is not the
case: the IHS model properly gives the critical intensity
and asymptotic (divergent) behavior of the amplification
in the limit L ø lc only, where L is the interaction length
and lc is the (longitudinal) correlation length of the laser
field. However, for a reasonable form of the correlation
function C�x�, the error made as L � lc is found to remain
small so that the critical intensity given by the IHS model
for L & lc is still in a good qualitative agreement with the
exact value. The discrepancy observed for a small but fi-
nite L�lc can be attributed to the failure of the approxi-
mation (ii), i.e., to the random fluctuations of the hot-spot
field around the dominant part uC�x�.

We consider the following 1D stochastic convective
amplifier:

≠xE�x� � gS2�x�E�x� , (1)

where g is a (real) coupling constant playing the role
of the average laser intensity, and S is a real homoge-
neous Gaussian field defined by �S�x�� � 0, �S�x�S�y�� �
C�x 2 y�, and C�0� � 1. Expanding S according to the
Karhunen-Loève expansion [7], one can express the mo-
ments of E in terms of the eigenvalues of the correlation
function C. Namely, one finds that the amplification factor
for �E�, A � �E�L�2���E�2L�2�, is given by

A � �e
g
RL�2

2L�2
S2�x�dx

� �
1Ỳ
n�1

1
p

1 2 2gkn
, (2)

where k1 . k2 · · · . kn . . . . are the solutions to
the eigenvalue equation

RL�2
2L�2 C�x 2 y�wn� y� dy �

knwn�x�, and wn are the corresponding orthonormal
eigenfunctions. The critical coupling for �E� is thus given
by gcr � 1��2k1�, and one has the asymptotic behavior

A �
Z

p
1 2 2gk1

µ
g "

1
2k1

∂
, (3)

with Z �
Q1`

n�2�1 2 kn�k1�21�2. A similar expression
for �EN� is obtained in which g is replaced by Ng.

As explained previously, one expects the IHS model to
be able to retrieve this behavior exactly in the case L & lc.
The IHS model counterpart of Eq. (2) reads

AIHS �
1
h

Z 1`

Imin

Z h�2

2h�2
P�I�A�I, x0� dx0 dI , (4)

with

A�I, x0� � e
gI

RL�2

2L�2
C�x2x0�2 dx

. (5)

Here x0 is the position of the hot spot giving rise to the
amplification in the interaction region. Since S is homo-
geneous, x0 is uniformly distributed over the “influence
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zone” 2h�2 # x0 # h�2 where h $ L is at most of the
order of the correlation length. The quantity P�I� denotes
the average number of hot spots of intensity between I
and I 1 dI (with I � u2), within the influence zone. For
I $ Imin, with Imin � 6 typically [9], it is given by [7]

P�I� �
hjC00�0�j1�2

2p
e2I�2. (6)

The quantity h will not play any role in the following and
needs not be further specified. Performing the x0 inte-
gration by the steepest descent method, one obtains after
some straightforward algebra

AIHS �
ZIHS

p
1 2 2gkIHS

µ
g "

1
2kIHS

∂
, (7)

with ZIHS � 	jC00�0�jkIHS�
2C�L�2�jC0�L�2�j��1�2 and
kIHS �

RL�2
2L�2 C�x�2 dx. Note that Eq. (7) does not de-

pend on h and Imin, and that the x0 integration, which is
usually omitted in the applications of the IHS model, is
necessary to get the correct exponent of the divergent fac-
tor. The quantities kIHS and ZIHS are not equal to k1 and
Z in general, except in the very restrictive limit L�lc ø 1
where the expressions of ZIHS and kIHS coincide with
k1 and Z at first and third order in L�lc, respectively
[cf. Eqs. (9) and (10)].

Figure 1 shows k1�L and kIHS�L for two simple forms
of the correlation function: (a) C�x� � 
1 1 �2x�lc�2�21

and (b) C�x� � sin�3.79x�lc���3.79x�lc�, where lc is
defined as the full width at half maximum (FWHM)
of C�x�. It can be seen that the relative error on k1
remains small in the whole domain L & lc. At L � lc

one has Dk�k � 0.1 in case (a) and Dk�k � 0.02 in
case (b), with Dk�k � 2jk1 2 kIHSj��k1 1 kIHS�. We
have checked that this result holds for a wide range of
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FIG. 1. k1�L (solid line) and kIHS�L (dotted line) as a func-
tion of L�lc for two simple forms of the pump-field corre-
lation function: (a) C�x� � 
1 1 �2x�lc�2�21 and (b) C�x� �
sin�3.79x�lc���3.79x�lc�.
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reasonable forms of the correlation function. Hence, in
the case L & lc, the IHS model can be regarded as a
good heuristic model giving a satisfactory estimate of the
critical coupling. However, one should not overlook the
inability of this model to yield the exact values of k1 and
Z. This failure means that, in the limit g " gcr , one cannot
a priori justify the approximation (ii), and consequently
the model itself, just on behalf of the fact that the statisti-
cally relevant hot spots have an arbitrarily large intensity.
Instead, the validity of the critical coupling given by the
IHS model depends on the correlation function C�x� and
should be discussed for each particular pump field S�x�.

Figure 2 shows k1�L and kIHS�L for a more compli-
cated correlation function with two characteristic lengths:
C�x� � �1�2� 	
1 1 �2x�l1�2�21 1 
1 1 �2x�l2�2�21�. The
correlation length, again defined as the FWHM of C�x�,
is now lc � �l1l2�1�2 and we have taken l2 � 100l1. In this
case one has Dk�k � 30% for L � 0.3lc and Dk�k �
50% at L � lc, which makes the use of the IHS model for
this particular correlation function very questionable. The
origin of the discrepancy is related to the characteristic
distance between neighboring hot spots, lHS, which can be
estimated heuristically from Eq. (6). This equation sug-
gests l21

HS � �2p�21jC00�0�j1�2
R1`

Imin
e2I�2 dI, which gives

lHS � �pl1�2�eImin�2. Taking Imin � 6, one has Imin .

log�l2�l1� � 4.61 and lHS . �l1l2�1�2 � lc. It follows
that, for L # lc, there is at most one hot spot in the inter-
action region and the discrepancy must again be mainly
attributed to the failure of (ii). This example of two-scale
correlation function cannot be regarded as very represen-
tative of an actual laser field correlation function. Never-
theless, it is interesting to notice that in the case of two
crossed laser beams with O�1� crossing angle, the hot-spot
intensity profile along one of the beams does have such a
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FIG. 2. k1�L (solid line) and kIHS�L (dotted line) as a func-
tion of L�lc for a multiscale pump-field correlation function:
C�x� � �1�2� 	
1 1 �2x�l1�2�21 1 
1 1 �2x�l2�2�21�. The cor-
relation length is lc � �l1l2�1�2 and l2 � 100l1.
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two-scale structure with, in addition, a short wavelength
interference pattern superimposed on the central part of
the hot spot. Although such an interference pattern seems
to invalidate the use of the simple (first order) convective
amplifier model (1), the result displayed in Fig. 2 suggests
that one should be cautious in applying the IHS model to
beam crossing experiments with a large crossing angle.

As suggested by the previous results, for a small but
finite L�lc (or L�lHS for a multiscale correlation), the
discrepancy between the IHS model and the underlying
stochastic amplifier comes from the random fluctuations
of the hot-spot field around its deterministic component
uC�x�. To prove this statement one must reconsider the
IHS model without assuming the approximation (ii); i.e.,
one must replace the deterministic component uC�x� by
the full (stochastic) conditional field Su�x� corresponding
to the realizations of S with a local maximum of height
u at x � 0. In the following we show that the effects
of the random fluctuations of Su do cancel the deviations
kIHS 2 k1 and ZIHS 2 Z at lowest order. In the limit of
a small interaction region, L ø lc, the quantities k1 and
Z can be obtained as power series of ´ � �L�lc�2 ø 1.
Taking L as unit length, expanding C�x� as

C�x� � 1 2 ´
L

2
x2 1 ´2 M

4!
x4 1 O�´3� , (8)

where L . 0 and M . L2, and determining the eigen-
values kn perturbatively in ´, one finds

k1 � 1 2 ´
L

12
1 ´2 L2 1 2M

6!
1 O�´3� , (9a)

Z � 1 1 ´
L

24
1 O�´2� . (9b)

On the other hand, from the expressions of kIHS and ZIHS
and the expansion (8), one obtains

kIHS � 1 2 ´
L

12
1 ´2

µ
3
2

∂2 L2 1 M�3
6!

1 O�´3� ,

(10a)

ZIHS � 1 1 ´
M

48L
1 O�´2� . (10b)

According to Theorem 6.7.1 of Ref. [7], the conditional
field Su can be written as Su�x� � uC�x� 1 wub�x� 1

Y�x�, where Y is a nonhomogeneous, zero-mean, Gauss-
ian field, wu is a random variable independent of Y , and
b�x� � �´x2�2�

p
M 2 L2 1 O�´2�. If one does not as-

sume the approximation (ii), then the amplification factor
A�I, x0� on the right-hand side of Eq. (4) must be re-
placed by

B�u, x0� � �e
g
R1�2

21�2
Su�x2x0�2 dx

�wu,Y , (11)

where �?�wu,Y denotes the statistical average over the re-
alizations of wu and Y . The density for wu is given
085006-3
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by [7]

P�wu� �
´�uL 1 wu

p
M 2 L2 �

C�u�
Q�wu�e2w2

u�2, (12)

where Q�wu� � H�uL 1 wu

p
M 2 L2 �, H is the

Heaviside step function, and C�u� �
p

2p u´L as
u ! 1`. The corrections yielded by Y are found to
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be of higher order than k1 2 kIHS and Z 2 ZIHS; we
will thus take Y � 0 in the following. In this limit, the
stochastic fluctuations of Su reduce to a mere random
variation of the curvature of the intensity profile near the
hot-spot maximum. Performing the wu integration by a
steepest descent method, one finds that B �u, x0� reduces
to b�I, x0�A�I, x0� with I � u2 and where the function
b�I, x0� is given by
b�I, x0� �

∑
1 2 ´g

µ
M
L

2 L

∂ µ
1
12

1 x2
0

∂
1 O�´2�

∏
exp

∑
´2g2I

2
�M 2 L2�

µ
1
12

1 x2
0

∂2

1 O�´3�
∏

. (13)
Averaging over wu has promoted the term of S2
u propor-

tional to uwu, which was a priori negligible, to the status
of a significant term, proportional to u2, renormalizing the
deterministic gain factor gu2

R1�2
21�2 C�x 2 x0�2 dx of the

IHS model. Performing then the remaining integrations
over x0 and I in the limit g " gcr , one recovers the correct
asymptotic behavior (3), with k1 and Z given by Eqs. (9a)
and (9b), respectively. The deviations kIHS 2 k1 and
ZIHS 2 Z have been canceled, at lowest order, by the
contribution of b�I, x0�, i.e., by the effects of the random
fluctuations of the hot-spot field around its deterministic
component.

In this Letter, we have compared the IHS model results
to those of the underlying stochastic amplifier. We have
considered the case of a 1D linear amplifier in the limit
where there is at most one hot spot per interaction length.
We have checked that, for a wide class of pump-field cor-
relation functions, the IHS model gives a satisfactory esti-
mate of the exact critical coupling. We have then pointed
out that this result is by no means a general result. Ran-
dom fluctuations of the hot-spot field around its dominant,
deterministic, component can spoil this qualitative agree-
ment, even at the vicinity of the critical coupling where
the IHS model was expected to be very accurate. It fol-
lows that the validity of the critical coupling given by the
IHS model depends on the correlation function of the pump
field and should be discussed in each particular case. We
have given an example of a multiscale pump-field corre-
lation function for which the discrepancy is found to be
significant. Finally, for a small but finite L�lc, we have ex-
plicitly shown that the discrepancy between the IHS model
and the underlying stochastic amplifier must be attributed
to the random fluctuations of the hot-spot field around its
deterministic component.
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