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Exact Phase Diagram for an Asymmetric Avalanche Process
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The Bethe ansatz method and an iterative procedure based on detailed balance are used to obtain exact
results for an asymmetric avalanche process on a ring. The average velocity of particle flow, y, is derived
as a function of the toppling probabilities and the density of particles, r. As r increases, the system shows
a transition from intermittent to continuous flow, and y diverges at a critical point rc with exponent a.
The exact phase diagram of the transition is obtained and a is found to depend on the toppling rules.
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Avalanche dynamics is commonly found in extremal
systems with movable elements near a border of stabil-
ity. Relaxation of unstable states leads to the dispersive
transport of particles involved into avalanches producing
the typical long-tailed distribution of avalanche sizes [1].
Many physical phenomena such as interface depinning [2]
or earthquakes [3] can be recast in terms of avalanches
[4]. However, the most direct example is given by a class
of granular systems, which exhibit intermittent avalanches
explicitly and evolve naturally to a critical state [5]. One
of the simplest lattice versions of granular systems is the
“Oslo” model [6]. This is a critical slope model on a
one-dimensional lattice with open boundaries. Grains are
dropped at the left boundary with some driving rate and
move along the lattice to the right every time the local slope
of density exceeds some critical value. The critical slopes
are dynamical random variables. This model has been
shown to represent a large class of avalanche phenomena
and undergoes a dynamical transition from intermittent to
continuous flow when the driving rate increases [7]. De-
spite its apparent simplicity, the Oslo model resists ana-
lytical treatment, in contrast with deterministic sandpile
models [8].

In this Letter, we introduce a solvable stochastic model
of the asymmetric avalanche process (ASAP) on a ring.
We use the Bethe ansatz method and an iterative procedure
based on detailed balance to calculate the average velocity
of particle flow, y, as a function of the toppling probabili-
ties and density of particles, r. We find that as r increases
at fixed toppling probabilities, the system shows a transi-
tion from intermittent to continuous flow, and y diverges
at a critical point rc with exponent a. We obtain the exact
phase diagram of the transition and find that a depends on
the toppling rules.

We define the ASAP as follows: In a stable state, P
particles are located on a ring of N sites. During the in-
finitesimal time interval dt, each particle has a probability
dt of jumping one step to the right. If any site x con-
tains a number of particles n�x� . 1, it becomes unstable,
and must relax immediately by spilling to its right either
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n particles with probability mn or n 2 1 particles with
probability 1 2 mn. The relaxation stops when all sites
become stable again with n�x� # 1. This random process
is a generalization of a model studied by Maslov and Zhang
(MZ) [9]. We let mn depend on n and use periodic bound-
ary conditions [10,11]. To induce an avalanche dynamics
in a closed system, we use infinitesimally slow directed
Poissonian driving of particles through the lattice instead
of adding particles from outside [7,12,13]. The parame-
ters that control the transition to continuous flow in our
case are the density of particles and the toppling probabili-
ties unlike the driving rate in the Oslo model. In the MZ
model as well as our model, the critical height and random
toppling rules can be considered as corresponding to the
random critical slope in the Oslo model. MZ have shown
that their model gives avalanche dynamics with a critical
distribution of avalanche sizes [9].

It is instructive to compare our model with the asym-
metric exclusion process (ASEP), which has a long his-
tory in the literature [14–18]. The usual presentation of
the ASEP is given by a master equation for the probabil-
ity Pt�x1, . . . ,xP� of finding P particles at time t on sites
x1, . . . , xP of a ring of N sites. During any time interval
dt, each particle jumps with probability dt to its right if
the target site is empty. This elementary restriction leads
to a nontrivial problem of evaluation of the steady state
properties, which can be solved by the Bethe ansatz. The
main difference between the ASEP and ASAP lies in the
degree of reorganization of a configuration of particles dur-
ing the time interval dt. In the ASEP, a new configuration
either differs from the initial one by a position of a single
particle, if the motion is allowed, or remains unchanged if
the motion is forbidden. In the ASAP, the motion of par-
ticles is always possible and the new configuration may be
completely different from the previous one if an avalanche
occurs. Therefore, the Bethe ansatz method, to be applied
to the ASAP, should be essentially extended.

Before handling the Bethe ansatz, we give an intuitive
derivation of the quantity of interest. The velocity of the
particle flow is defined as the average number of steps of
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all particles involved in an avalanche. For large N , the ba-
sic features of the system can be already seen in a simple
description under the assumption that the occupation num-
bers of all sites are uncorrelated and equal to the density
r � P�N . Let Px�n� be the expected number of the events
when n particles are spilled from a site x 2 1 to x during
an avalanche. They satisfy the Markov equation

Px11�n� �
X
m

Px�m�wm,n (1)

with the transition probabilities

wn21,n � rmn ,

wn,n � r�1 2 mn11� 1 �1 2 r�mn ,

wn11,n � �1 2 r� �1 2 mn11� .

Here the transition probability wm,n corresponds to
the event where m particles flow into site x from site
x 2 1 and then n particles flow out from site x to site
x 1 1. The transition probabilities satisfy the normaliza-
tion

P
n wm,n � 1.

Then we consider the total number of spillings during
an avalanche P�n� �

PN
x�1 Px�n� irrespectively of sites

where they occur. One can verify that P�n� corresponds to
a stationary solution of the same Markov equation (1). The
solution can easily be found recursively from the detailed
balance condition

P�n�wn,n11 � P�n 1 1�wn11,n . (2)

The first term of the recursion, P�1�, can be derived from
the expected numbers of stops: P�1� �1 2 r� � 1. This
condition implies that an avalanche stops every time when
the single particle hits an empty site. Resolving the recur-
sion, one obtains

P�n� �
1
r

µ
r

1 2 r

∂n nY
k�2

mk

1 2 mk
, n $ 2 . (3)

Then, the velocity of flow is

y �
X̀
n�1

nP�n� . (4)

Close to the critical point rc the average velocity of par-
ticle flow is expected to have a power law divergency
�rc 2 r�2a [10,11]. The exponent a is not universal
and depends on toppling rules. In the Oslo model [6],
the divergence of the average avalanche size is exponen-
tial when the driving rate approaches its critical value [7].
The formula (3) allows one to construct a class of models
parametrized by an arbitrary exponent a which controls
the divergence of the velocity of the flow in the vicinity
of the critical point. To this end, consider probabilities mn

in the form

mn

1 2 mn
�

2m

1 2 m

n 2 2 1 a

na
, (5)
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where m is a parameter and m [ �0, 1�. For all a [ �0, `�
and all n $ 2 we have mn [ �0, 1�. Now, from the general
result Eq. (4), we obtain

y �
1

1 2 r

µ
1 2

2mr

a�1 2 m� �1 2 r�

∂2a

. (6)

This expression reveals power law singularity with an ar-
bitrary exponent a. The critical density rc as a function
of parameter m is plotted in Fig. 1. Solid lines correspond
to different values of a. Below these lines, the velocity
is finite and avalanches are intermittent. The area above
the lines corresponds to the phase of continuous flow. The
broken line in Fig. 1 corresponds to the particular choice
of set �mn�

mn � m
1 2 �2m�n21

1 1 m
. (7)

This set of parameters ensures complete integrability
of the ASAP. Below, we shall see that for this set �mn�
formula (3) coincides with that obtained in the thermody-
namic limit from the exact Bethe ansatz solution. At the
same time, the simplified solution (6) does not imply that
the problem can be solved for finite N and P. It is one
of the goals of the Letter, to show that the choice of mn in
the form (7) ensures the exact Bethe ansatz solution of the
asymmetric avalanche process.

The Bethe ansatz approach is free from assumption
about noncorrelated occupancy of lattice sites and deals
directly with the probability Pt�x1, . . . ,xP� of finding P
particles on sites x1, . . . , xP. When the distances between
neighboring particles are greater than 1, the master equa-
tion for Pt�x1, . . . ,xP� describes free directed diffusion:

FIG. 1. The phase diagrams for different toppling rules. The
broken line separates the intermittent flow phase from the con-
tinuous flow phase for the case mn � m�1 2 mn21�. Solid lines
represent phase boundaries for models parametrized by a for
a � 1�4, a � 2, and a � 16.
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≠tPt�x1, . . . , xP� �
X
k

�egPt�. . . ,xk 2 1, . . .�

2 Pt�. . . , xk , . . .�� . (8)

We introduce the auxiliary parameter g, which allows one
to use the largest eigenvalue of the kinetic equation as the
generating function of the distance Yt traveled by a particle
during the time t [16]. The limit g ! 0 will finally be
taken, so that the solution Pt�x1, . . . ,xP� of Eq. (8) will
become the probability.

The absence of neighboring particles ensures that only
the probabilities of stable configuration enter Eq. (8). In
order to make this equation valid even when any two par-
ticles are neighbors, one has to exclude the “unphysical”
terms that appear in the right-hand side with the help of
the boundary conditions

Pt�. . . , x,x, . . .� � �1 2 m�egPt �. . . , x 2 1, x, . . .�
1 me2gPt�. . . , x 2 1, x 2 1, . . .� .

(9)

We consider this relation as recursion. Here the unphysi-
cal term Pt�. . . , x, x, . . .� is expressed through another
unphysical term Pt�. . . , x 2 1, x 2 1, . . .� and so on, until
we get a final expression in terms of stable configurations
only. In other words, the diffusion equation (8) describes
the slow Poisson dynamics of particles, while the recur-
sion relation gives the fast avalanche process.

Similar boundary conditions can be written for the case
of three or more neighboring particles. However, appli-
cability of the Bethe ansatz requires all of them to be re-
duced to the two-particle boundary condition (9). Thus, the
ansatz can be used only if the probabilities mn for spilling
all n particles from a site can be represented recursively as
a cascade of two-particle topplings, each spilling either two
particles with probability m or one particle with probabil-
ity �1 2 m�. In this way, we obtain the recursion relation

m2 � m, mn � m�1 2 mn21� (10)

that gives the expression (7) for toppling probabilities mn.
Now we can use the Bethe ansatz for the eigenfunction

of Eq. (8):

Pt�x1, . . . , xP� � eNLt
X

s�1,..., P�

A�zs1 , . . . , zsP �

3 z2x1
s1

, . . . , z2xP
sP

,

where the sum is over all permutations s�1,...,P� of the set
of indexes 1, 2, . . . , P. The eigenvalue is

L �
eg

N

PX
i�1

zi 2
P
N

. (11)

The boundary condition (9) fixes the relation of amplitudes
in the Bethe ansatz

A�. . . , zi, zj , . . .�
A�. . . , zj, zi, . . .�

� 2
1 2 �1 2 m�egzi 2 me2gzizj

1 2 �1 2 m�egzj 2 me2gzizj
.
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If we also impose periodic boundary conditions, we obtain
the Bethe equations

z2N
k � �21�P21

PY
j�1

1 2 �1 2 m�egzj 2 me2gzjzk

1 2 �1 2 m�egzk 2 me2gzjzk
.

(12)

For a finite N , the eigenvalue L � 0 corresponds to the
solution zj ! 1 as g ! 0 for all j � 1, . . . , P. In the
thermodynamic limit, the dependence zj�g� becomes dis-
continuous at g � 0. For any g . 0, even infinitesimally
small, the roots zj form a finite-size contour around the
trivial solution zj � 1, j � 1, . . . , P.

Let us introduce variables x by

z � e2g 1 2 x

1 1 mx
(13)

and assume that the solutions �xj� are distributed along
a contour G which is symmetric with respect to complex
conjugation. Then, we introduce the density of roots R�x�
along the contour such that

r �
1

2pi

Z
G

R�x� dx . (14)

In the thermodynamic limit, we can write Eq. (11) in the
integral form

L � 2
1 1 m

2pi

Z
G

xR�x�
1 1 mx

dx . (15)

Taking the logarithm of Eq. (12), we obtain the Bethe
equation

g � 2p�x� 1
1

2pi

Z
G

Q�x�y�R�y� dy 1 2pih�x� ,

(16)

where

p�x� � ln

µ
1 1 mx

1 2 x

∂
, Q�x� � ln

µ
1 1 mx

x 1 m

∂
.

The function h�x� is defined so that 2pidh�dx � R�x�
and h�x0� � 2h�x̄0� � r�2, where x0 and x̄0 are the end-
points of G. When g � 10, the integration contour is
closed, and the values x0 � x̄0 � 2jx0j are real and nega-
tive. In this case, the solution of the integral equation (16)
can be found easily:

R0�x� �
r

x
2

1
x 2 1

. (17)

When g . 0, the contour becomes disconnected, which
corresponds to the so-called conical point at the phase
diagram of the asymmetric six-vertex model [19]. In the
vicinity of g � 0, Eq. (16) can be treated perturbatively
[20]. Namely, we can look for the solution R�x� as an
expansion in powers of e which is a small deviation of the
argument of x0 from p so that x0 � jx0je2i�p2e�
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R�x� � R0�x� 1 eR1�x� 1 e2R2�x� 1 · · · . (18)

The zero order term is given by (17). The calculation
of the first order shows that the perturbative solution exists
only if R0�x0� � 0, which fixes the absolute value of x0
relating it to the density of particles r � x0��x0 2 1�.
Next orders can be obtained from expressions found by
Bukman and Shore [20].

R1�x� � 0 , (19a)

R2�x� �
1
6

1 1 x0

�1 2 x0�3

x0

x
, (19b)

R3�x� �
1

3p�1 2 x0�2

X
nfi0

n�2m�jnj

1 2 �2m�jnj

µ
x0

x

∂n11

.

(19c)

If we are looking for g also in the form of the perturbative
expansion in e, the first nonvanishing term is of third order

g � 2e3 x0

3p�1 2 x0�2 1 O�e5� . (20)

The eigenvalue L up to the same order is

L�g� � e3 �m 1 1�x0

3p�1 2 x0�2

3

µ
x0

�1 1 x0m�2
2

X̀
s�1

s�2m�2s21xs
0

1 2 �2m�s

∂
. (21)

Considering L as the generating function of the numbers of
steps involved into an avalanche, we can write the average
velocity as

y �
1
r

≠L

≠g

Ç
g�10

�
1
r

≠L

≠e

¡
≠g

≠e
. (22)

From (20) and (21), using (7) we get finally

y �
�1 2 r� �1 1 m�
�1 2 r�1 1 m��2

1
1
r

X̀
n�1

n�21�nm2n

mn11

µ
r

1 2 r

∂n

.

(23)

It is easy to see that this result is equivalent to Eqs. (3) and
(4) if mn is chosen in the form (7).

The velocity of flow given by Eq. (23) diverges with
critical exponent a � 2 at r � rc � 1��1 1 m�. For
large avalanches, n ¿ 1, the probability mn tends to
the constant m` � m��1 1 m� and hence arguments by
Maslov and Zhang [9] can be used for finding P�s�. At the
critical line, P�s� � 1�st where t � 4�3 is the universal
exponent for a broad class of directed models [21].
Derivation of this exponent needs the only fact that the
number n of spilled particles at every step of the avalanche
makes fair random walk when n is large. It would be in-
teresting to find the condition of changing the universality
class as, for example, the condition of multiple topplings
in a two-dimensional directed sandpile model [22,23].
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One can see that the exact expression of the average
velocity in the thermodynamic limit can be obtained both
with the simplified arguments and with the Bethe ansatz.
However if an average value, e.g., diffusion coefficient,
contains higher cumulants of the distance Yt traveled by
a particle, the Bethe ansatz remains the only appropriate
tool. The Bethe ansatz approach allows one also to take
into account effects of the finite size of the system.
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