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Nonlinear Localized Waves in a Periodic Medium

Andrey A. Sukhorukov and Yuri S. Kivshar

Nonlinear Physics Group, Research School of Physical Sciences and Engineering, Australian National University,
Canberra ACT 0200, Australia
(Received 31 October 2000; published 1 August 2001)

We analyze the existence and stability of nonlinear localized waves in a periodic medium described
by the Kronig-Penney model with a nonlinear defect. We demonstrate the existence of a novel type of
stable nonlinear band-gap localized state, and also reveal a generic physical mechanism of the oscillatory
wave instabilities associated with the band-gap resonances.
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Wave propagation in periodic media is associated
with many interesting physical phenomena [1]. Modern
technology allows us to create different kinds of macro-
and mesoscopic periodic and layered structures such as
semiconductor superlattices and heterostructures, mag-
netic multilayers possessing the giant magnetoresistance,
multiple-quantum-well structures, optical waveguide
arrays, photonic band-gap materials, etc. The main
feature of different periodic structures (which follows
from the classical Floquet-Bloch theory) is the exis-
tence of frequency band gaps (or stop bands) where
linear waves undergo Bragg reflection from the periodic
structure [1]. However, many of the recently fabricated
periodic structures possess nonlinear properties that
give rise to qualitatively new physical effects such as
multistability of a finite nonlinear periodic medium [2]
and energy localization in the form of gap solitons [3].
Such effects are usually analyzed in the framework of the
coupled-mode theory [3,4], and they are associated with
the nonlinearity-dependent tuning of the stop band as the
wave intensity is increased.

Recent experiments, such as the observation of optical
gap solitons [5] and the control of coherent matter waves
in optical lattices [6], as well as theoretical results on gap
solitons in Bose-Einstein condensates [7] and the oscilla-
tory instability of Bragg solitons [8], call for a systematic
analysis of nonlinear effects in periodic structures beyond
the approximation provided by the coupled-mode theory.
Such an analysis is crucially important for determining sta-
bility of nonlinear waves in periodic structures because the
wave instabilities can appear due to the mode coupling to
other bands.

In this Letter, we present the first analysis of the
existence and stability of nonlinear localized waves in a
periodic medium with multiple gaps in the transmission
spectrum that is valid beyond the coupled-mode theory.
We consider a simplified (but still very general) model
where waves are localized in a layered medium by an
intensity-dependent defect (or, in other words, they are
guided by a thin-layer nonlinear waveguide). Implying
the applicability of our results to a variety of different
systems, we describe four qualitatively different physical
situations and characterize, in the framework of a unified
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and systematic approach, the properties of two types of
nonlinear localized waves [9]. For the first time to our
knowledge, we analyze stability of nonlinear localized
waves in a periodic medium and reveal an important
physical mechanism of wave instability associated with
the band-gap resonances.

Model.—We describe localized waves in a superlattice
using the nonlinear Schrodinger equation for the normal-
ized wave envelope ¢(x, 1),
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where I = |¢|2 is the wave intensity, ¢ is time (or propa-

gation variable), x is the spatial coordinate, and the real
function F(I;x) describes both nonlinear and periodic
properties of the medium. We note that the system (1)
is Hamiltonian, and for localized solutions the power P =
[ "” I(x) dx is conserved.

We seek stationary localized solutions of Eq. (1) in the
form i (x,1) = u(x; w)e'®!, where w is the normalized
frequency (or the propagation constant, in optics), and the
real function u(x; w) satisfies the equation
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We assume that the superlattice is linear, and nonlinearity
appears only through the properties of an embedded local-
ized defect. Then, if the corresponding width of the wave
envelope is much larger than that of the defect, the inho-
mogeneity can be modeled by a delta function and, in the
simplest case, we can write F(I;x) = v(x) + 8(x)G(I),
where the function G(I) characterizes the properties of the
defect, and v(x) = v(x + h) describes an effective poten-
tial of the superlattice with the spatial period /.

For such a nonlinearity, localized waves can be con-
structed with the help of matching conditions, by using
the solutions of Eq. (2) with F(I;x) = v(x), presented in
the form of the Bloch-type wave functions [1].

Band-gap structure and localized waves.—If the effec-
tive periodic potential v(x) is approximated by a piece-
wise-constant function (the Kronig-Penney model), the
solution can be decomposed into a pair of counterpropa-
gating waves with the amplitudes a(x; w) and b(x; w),
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up(x; ) = alx; @)e HEN + b(x;w)e N, (3)

where u(x;®) = /o — v(x) is the local wave num-
ber. As follows from the Floquet-Bloch theory, for a
Bloch-wave solution the reflection coefficient r(x; w) =
b(x;w)/a(x; w) is a periodic function, i.e., r(x;w) =
r(x + h; w), and it satisfies the eigenvalue problem:

T(x; w) < r(xl;a))> = T(w)<r(x1;w) > “4)

where T'(x; w) is a transfer matrix that describes a change
of the wave amplitudes {a, b} after one period (x,x + h)
[10]. It was found that detT = 1, and therefore two lin-
early independent solutions of Eq. (4) correspond to a pair
of the eigenvalues 7 and 7!, Relation 7(w) determines
a band-gap structure of the superlattice spectrum: the
waves are propagating, if |7| = 1, and they are localized,
if [7] # 1. In the latter case, a nonlinear defect can support
nonlinear localized waves as bound states of Bloch-wave
solutions with the asymptotics |u(x — *o)| — 0. The
wave amplitude at the defect is determined from the con-
tinuity condition at x = 0, i.e., Ip = I1(0") = I(0”) and
[du/dx];);()f + G(Ilp)uy—o = 0. Then, we use Eq. (3)
to express the latter condition through the superlattice
characteristics,

Go = G(lp) = {(w). (%)
Here { = ({" + { )x=0, (T =p (1 — r5) (1 +r5)7Y,
and “+” and “—” stand for the characteristics on the

right and left sides of the defect, respectively, i.e., v(x) =
vt(x]), forx > 0, and v(x) = v~ (|x]), for x < 0.

Relation (5) allows us to identify different types of non-
linear localized states. We notice that such localized states,
supported by an attractive nonlinear defect (G > 0), exist
in the so-called waveguiding regime, when {(w) > 0. Ad-
ditionally, localization can occur at a repulsive nonlinear
defect (Go < 0) in the antiwaveguiding regime, provided
{(w) <O0.

To study the linear stability, we consider the evolution
of small-amplitude perturbations of the localized state pre-
senting the solution in the form

Gx, 1) = {ux) + v(x)e™ + wHx)e Ve,

and obtain the linear eigenvalue problem for v(x) and
w(x), which is used to determine the possible eigenvalues
v. Specifically, from the requirement of mode localization
it follows that the eigenvalues should satisfy the matching
condition Y(y) = 0 [11], where Y(y) =[G — {(w +
YIG — {w — ¥)] = (G — Gp)?, G =Gy +
IoG'(Ip), and I is calculated for an unperturbed solution.
In general, the eigenmode solutions fall into one of the
following categories: (i) internal modes with real eigen-
values describe periodic oscillations (“breathing”) of the
localized state, (ii) instability modes correspond to purely
imaginary eigenvalues with Imy < 0, and (iii) oscillatory
instabilities can occur when the eigenvalues are complex
(and Imy < 0). Since the linear spectrum has a symmetry
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v — *vy*, eigenmodes with Imy # 0 always indicate
instability, and in the following we consider only solutions
with Rey = 0 and Imy = 0 with no lack of generality.

To demonstrate the basic stability results, we consider
a localized defect possessing a cubic nonlinear response,
G(I) = a + BI. Under proper scaling the absolute value
of the nonlinear coefficient 8 can be normalized to unity,
so that 8 = +1 corresponds to self-focusing and 8 = —1
to self-defocusing nonlinearity. Localization depends also
on the sign of the linear coefficient «, which defines the
defect response at small intensities: attractive if a > 0,
and repulsive otherwise. Therefore, below we consider
four qualitatively different examples that correspond to
different signs of « and S.

Self-focusing nonlinearity.—First we consider the prop-
erties of localized waves supported by a defect with a
self-focusing nonlinearity (8 = +1) and attractive lin-
ear response (@ > 0). Such waves already exist in the
linear limit at the frequencies w, defined by the equal-
ity {(wp) = a, and they correspond to the waveguiding
regime only (white regions in Fig. 1, top). Using the
guided-wave terminology, we notice that the first band
gap (semi-infinite white region at @ > 19) corresponds to
the conditions of internal reflection (IR) and, therefore, its
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FIG. 1. Top: Power vs frequency dependences for the local-
ized waves: solid line—stable; dashed line—unstable; and

dotted line—oscillatory unstable. Middle: real (dotted line)
and imaginary (solid line) parts of the eigenvalues associated
with the wave instability. Shading marks “waveguiding” (white)
and “antiwaveguiding” (dotted) localization regimes inside the
band gaps. Bottom: the localized states corresponding to the
marked points (a),(b) in the top plot; shading marks the areas
with smaller ». The lattice parameters are 4 = 1, v(x) = 0 for
n—1/2<x/h<n,andv(x) =30forn < x/h <n + 1/2,
where n is integer, and a = 0.5, 8 = 1.
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dispersion properties should be similar to those of the con-
ventional waveguiding regime. Localized waves in this
band resemble ordinary guided waves modulated by a pe-
riodic structure [see Fig. 1(b)]. Since an IR wave pro-
file does not contain zeros, it is a fundamental eigenmode.
Therefore, the conditions of the Vakhitov-Kolokolov (VK)
stability theorem [12] are satisfied, and the IR states are
unstable if and only if dP/dw < 0. At the critical point,
dP/dw = 0, the linear eigenvalue passes through zero
and becomes imaginary, as illustrated in Fig. 1 (middle,
w = 27.5).

In contrast, band gaps appear at smaller @ due to the
resonant Bragg reflection (BR) at the periodic structure,
so that the localized waves are somewhat similar to gap
solitons composed of mutually coupled backward and for-
ward propagating waves [see Fig. 1(a)]. For the BR states,
the VK criterion provides only a necessary condition for
stability, since the higher-order localized states can also
exhibit oscillatory instabilities. Indeed, we notice that in
the linear limit there always exists an internal mode cor-
responding to a resonant coupling between the BR and IR
band gaps, since Y (a);(,IR) - w;(,BR)) = (0. We perform ex-
tensive numerical calculations and find that this mode leads
to an oscillatory instability of BR waves when the value
(w — Rey) moves outside the band gap; it occurs when
the wave intensity exceeds a threshold value (see Figs. 1
and 2).

Next, we study the linearly repulsive defect (a < 0)
with self-focusing nonlinearity. In this case, the
waveguiding-type states bifurcate from the band-gap
edges [with Gy = {(wp) = 0] and the stability criteria
are the same as in the case a > 0 discussed above;
see Fig. 3 (top, white regions), and characteristic mode
profiles in Figs. 3(a) and 3(c). The major difference from
the previous case is the existence of the antiwaveguiding
states at small intensities, Ip < |a/B|; see Fig. 3 (top,
dotted region). We find that such waves can be stable at
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FIG. 2. An example of a resonance that occurs between an
internal mode of the localized wave and a bang-gap edge and
leads to an oscillatory instability.
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low powers in the lowest-order band gap [such as one
shown in Fig. 3(b)], while at higher powers such states
exhibit oscillatory instabilities due to a resonance with
higher-frequency bands.

Self-defocusing nonlinearity.—Let us now consider the
case @ < 0 and B = —1, when the total response of the
defect is negative for any intensity, i.e., G(I) < 0. In this
case, the localized waves can exist only in the antiwave-
guiding regime [see Fig. 4(a), dotted regions], the non-
linear waves continue the linear impurity states, and their
frequency decreases at higher powers. We find that the
localized states corresponding to the lowest BR gap (at
larger w), are always stable [note, however, that instabil-
ities can appear if the superlattice parameters are differ-
ent]. However, in other band gaps the localized states can
exhibit oscillatory instability due to a resonance with the
lower bands.

Finally, we study the case of a linearly attractive defect
(@ > 0) possessing a self-defocusing nonlinearity (8 =
—1) . Atsmall intensities, the defect is attractive, and it can
support localized waves in a waveguiding regime, in both
IR and BR gaps, as shown in Fig. 4(b) (white regions).
Performing the stability analysis, we find that IR waves
are always stable, while oscillatory instabilities appear for
higher band-gap states. Since at higher intensities, i.e., for
Iy > |a/Bl, the defect response changes its sign, a new
type of localized waves can exist in the antiwaveguiding
dispersion region, bifurcating from the band-gap edge, as
shown in Fig. 4(b) (dotted region). It is possible to demon-
strate that for such waves the VK stability criterion be-
comes inverted, i.e., the waves are unstable if dP /dw > 0.
This happens because the signs of both the nonlinear re-
sponse and effective dispersion are altered compared to the
IR waves supported by a self-focusing defect. All higher
band-gap states exhibit oscillatory instabilities.

In conclusion, we have analyzed the existence and
stability of all possible types of nonlinear localized waves

50 T I I: I T
:
2 25— —
~ a . |
P ) ¥S .
0 1 | 1 | 1
-10 0 20 30
4 4 | 4 |
(a) (b) (©)
—~ 2= 7
\;/ 0 2|~ <
0
4 l 2 1 0 |
4 0 4 a4 0 4 4 0 4
X X X
FIG. 3. Power vs frequency, and (a)—(c) wave profiles for « =

—5, B = 1. Notations are the same as in Fig. 1.
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FIG. 4. Power vs frequency, for 8 = —1 and (a) & = —5,
(b) @ = 5. Notations are the same as in Fig. 1.

in one-dimensional periodic structures considering the
simplest nonlinear generalization of the Kronig-Penney
model with a localized nonlinearity for which both the
wave classification and stability analysis can be carried out
in a complete and systematic way. Similar results for the
self-trapped states and solitary waves have been recently
obtained for a periodic array of nonlinear waveguides [13].
Additionally, many of these results are valid for more
realistic physical models of extended nonlinear periodic
media. Such cases include the electron self-trapping and
locking states in cuprates and semiconductor superlattices
[14]; nonlinear guided waves in optical superlattices [15]
and waveguide arrays [16]; impurity modes in photonic
band-gap materials [17], magneto-optical periodic struc-
tures [18], and photonic crystal fibers [19]; coherent
matter waves and gap solitons in optical lattices [7,20],
etc. In particular, the stability of nonlinear localized
impurity modes is a crucial issue for creating tunable
band-gap materials where gaps could be controlled by
changing the input light intensity. Since the physical
mechanism of the resonance-induced instability is generic,
we expect that our results will be useful for the further
understanding of 2D and 3D models.
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