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Using the anti–de Sitter/conformal field theory correspondence, we relate the shear viscosity h of
the finite-temperature N � 4 supersymmetric Yang-Mills theory in the large N , strong-coupling regime
with the absorption cross section of low-energy gravitons by a near-extremal black three-brane. We show
that in the limit of zero frequency this cross section coincides with the area of the horizon. From this
result we find h �

p

8 N2T 3 . We conjecture that for finite ’t Hooft coupling g2
YMN the shear viscosity

is h � f�g2
YMN�N2T 3, where f�x� is a monotonic function that decreases from O ���x22 ln21�1�x���� at

small x to p�8 when x ! `.
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Introduction.—At finite temperatures, the large dis-
tance, long time behavior of gauge theories is described,
as in any other fluid, by a hydrodynamic theory [1]. To
write down the hydrodynamic equations one has to know
the thermodynamics (i.e., the equation of state) of the
medium, as well as the transport coefficients: the shear
and the bulk viscosities, the electrical conductivity [in
the presence of a U(1) gauge group], and the diffusion
constants (in the presence of conserved global charges).
Knowledge of these quantities in hot gauge theories is
crucial for numerous applications, the most notable of
which belong to the physics of the electroweak phase
transition in the early Universe [2] and of the quark-gluon
plasma possibly created in heavy-ion collisions [3].

When the gauge coupling is small (which requires, in
the case of QCD, temperatures much larger than the con-
finement scale), both the equation of state and the trans-
port coefficients are calculable perturbatively. At strong
coupling (i.e., at temperatures not much larger than the
confinement scale), thermodynamics can be found nonper-
turbatively by lattice simulations, but transport coefficients
are beyond the reach of all current numerical techniques.
This situation is very unfortunate, since the quark-gluon
plasma one hopes to create in heavy-ion experiments has
relatively low temperature at which the perturbation theory
works very poorly.

Lacking methods to reliably compute the transport coef-
ficients of finite-temperature QCD, one should try to gain
insight into models where these coefficients can be com-
puted nonperturbatively. Recently, powerful techniques
based on the anti–de Sitter/conformal field theory (AdS/
CFT) correspondence have been developed, establishing,
in particular, the connection between the N � 4 super-
symmetric Yang-Mills (SYM) theory in the large coupling,
large N limit and classical ten-dimensional gravity on the
background of black three-branes [4–7]. This allows one
to perform analytical calculations in a strongly coupled
four-dimensional gauge theory.
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In this Letter, we compute the shear viscosity h of the
strongly coupled finite-temperature N � 4 SYM theory
(the bulk viscosity of this theory vanishes due to scale
invariance). We first relate, using previously known results
from the AdS/CFT correspondence, the shear viscosity
with the absorption cross section of low-energy gravitons
falling perpendicularly onto near-extremal black three-
branes. We further show that this cross section is equal to
the area of the horizon, in a way very similar to the case of
black holes [8]. These facts provide enough information
for us to find that h � p

8 N2T3 , provided both the ’t Hooft
coupling and N are large. Remarkably, the shear viscosity
approaches a constant value in the large ’t Hooft coupling
limit, and this value is related to the area of the horizon
of the black brane.

The viscosity.—To start our discussion, we briefly
review the notion of viscosity in the context of finite-
temperature field theory. Consider a plasma slightly out
of equilibrium, so that there is local thermal equilibrium
everywhere but the temperature and the mean velocity
slowly vary in space. We define, at any point, the local
rest frame as the one where the three-momentum density
vanishes: T0i � 0. The stress tensor, in this frame, is
given by the constitutive relation

Tij � dijp 2 h

µ
≠iuj 1 ≠jui 2

2
3

dij≠kuk

∂

2 zdij≠kuk , (1)

where ui is the flow velocity, p is the pressure, and h and
z are, by definition, the shear and bulk viscosities, respec-
tively. In conformal field theories such as the N � 4
SYM theory, the energy momentum tensor is traceless,
Tm

m � 0, so ´ � T00 � 3p and the bulk viscosity van-
ishes identically, z � 0.

All kinetic coefficients can be expressed, through Kubo
relations, as the correlation functions of the corresponding
currents [9]. For the shear viscosity, the correlator is that
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of the stress tensor,

h � lim
v!0

1
2v

Z
dt dx eivt��Txy�t, x�, Txy�0, 0���

� lim
v!0

1
2vi

�GA�v� 2 GR�v�� , (2)

where the average �· · ·� is taken in the equilibrium thermal
ensemble, and GA and GR are the advanced and retarded
Green functions of Txy , respectively. In Eq. (2), the Green
functions are computed at zero spatial momentum. Though
Eq. (2) can, in principle, be used to compute the viscos-
ity in weakly coupled field theories, this direct method is
usually very cumbersome, since it requires resummation
of an infinite series of Feynman graphs. This calculation
has been explicitly carried out only for scalar theories [10].
A more practical method is to use the kinetic Boltzmann
equation, which gives the same results as the diagrammatic
approach [11].

For gauge theories at weak coupling, g2N ø 1, where
throughout this paper g � gYM is the gauge coupling, the
shear viscosity has the following parametric behavior,

h � C
N2T3

�g2N�2 ln�1�g2N�
. (3)

Basically, h is proportional to the product of the en-
ergy density ´ 	 N2T4 and the transport mean free time
t 	 ��g2N�2 ln�1�g2N�T�21. The numerical coefficient
C in Eq. (3), in principle, can be computed by solving the
linearized Boltzmann equation [12].

The relation to graviton absorption.—The key obser-
vation underlying this work is that the right hand side
of the Kubo formula (2) is known to be proportional to
the classical absorption cross section of gravitons by black
three-branes [13,14]. For completeness, we recall here the
basic argument leading to this correspondence. Consider,
in type IIB string theory, a configuration of N D3-branes
stacked on top of each other. The low-energy theory liv-
ing on the branes is the N � 4 U�N � SYM theory. On
the other hand, if N is large, the stack of D3-branes has
large tension, which curves space-time. In the limit of
large ’t Hooft coupling g2N , the three-brane geometry
has small curvature and can be described by supergravity.
Therefore, we have two descriptions of the same physics
in terms of strongly coupled gauge theory on the branes
and classical gravity on a certain background.

If one sends a graviton to the brane, there is some
probability that it will be absorbed. On the gravity side,
the absorption cross section can be calculated by solving
the wave equation on the background metric. On the gauge
theory side, the rate of graviton absorption measures the
imaginary part of the stress tensor–stress tensor correlator,
since gravitons polarized parallel to the brane are coupled
to the stress-energy tensor of the degrees of freedom on
the brane. The relation between the absorption cross sec-
tion s�v� of a graviton with energy v, polarized parallel
081601-2
to the brane (say, along the xy directions) and falling at a
right angle on the brane is related to the correlator in field
theory as [13,14]

s�v� �
k2

v

Z
dt dx eivt��Txy�t, x�, Txy�0, 0��� , (4)

where k �
p

8pG, G being the ten-dimensional gravita-
tional constant. The relation (4) has been explicitly veri-
fied for zero-temperature field theory (or extremal black
branes, in the gravity language) [13,14]. Such a check is
possible because there is a nonrenormalization theorem for
the correlator of the stress-energy tensor [15].

At finite temperature T , Eq. (4) relates the graviton ab-
sorption cross section by a near-extremal black brane hav-
ing the Hawking temperature equal to T with a correlator
in the hot SYM theory [16]. Since there is no supersymme-
try and no nonrenormalization theorem is known to work
at finite temperature, one cannot explicitly verify the rela-
tion (4). We instead view Eq. (4) as a prediction of the-
ory. In particular, taking the v ! 0 limit one can relate
s�v � 0� with the shear viscosity of hot SYM plasma,

h �
1

2k2
s�0� . (5)

Equation (5) implies that, for nonextremal black branes,
the graviton absorption cross section must not vanish in
the limit of zero frequency (in contrast to the extremal case
where s�v� 	 v3 at small v [13,14]), and, by comput-
ing the zero-frequency value of s one obtains the shear
viscosity of the hot SYM plasma. The problem of com-
puting the shear viscosity is now reduced to a problem of
classical gravity.

The metric of a nonextremal black three-brane has the
form [17,18]

ds2 � H21�2�r� �2f�r�dt2 1 dx2�
1 H1�2�r� � f21�r�dr2 1 r2dV2

5� , (6)

where H�r� � 1 1 R4�r4 and f�r� � 1 2 r4
0 �r4. The

extremal case corresponds to r0 � 0; the limit relevant for
us is the near-extremal one, r0 ø R. This metric has a
horizon at r � r0. From the existence of this horizon one
should expect s�0� to be nonvanishing. Running ahead,
we will show, by solving the wave equation on the metric
(6), that s�0� is equal to the area of the horizon,

s�0� � p3r3
0R2 (7)

(the numerical coefficient p3 is simply the area of the unit
five-sphere). Using the formula for the Hawking tempera-
ture of the metric (6),

T �
r0

pR2 , (8)

and the relation between R and N which is obtained by
identifying the Arnowitt-Deser-Misner mass per unit vol-
ume of the three-brane with the tension of a stack of N
081601-2
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D3-branes [13],

R4 �
kN

2p5�2 , (9)

we find the shear viscosity to be

h �
p

8
N 2T3. (10)

This is the main result of the paper. Up to a constant,
the shear viscosity is equal to the entropy density [19,20].
Both quantities are proportional to the area of the horizon.

Solution to the radial wave equation.—Now let us
show how Eq. (7) is obtained. We have to solve the
s-wave radial equation for a minimally coupled scalar
(such as the graviton polarized parallel to the brane),
≠m�p2g gmn≠nf� � 0. In the metric (6) this equation
acquires the form

f00 1
5r4 2 r4

0

r�r4 2 r4
0 �

f0 1 v2 r4�r4 1 R4�
�r4 2 r4

0 �2
f � 0 .

(11)

The method we use to solve Eq. (11) is the same matching
method that was used in the extremal case [13,14]. Since
ultimately we are interested in the limit v ! 0, we will
assume v ø T . More details about our method, as well
as the solution to the radial equation in the opposite limit
v ¿ T and for higher partial waves, can be found in
Ref. [21]. Earlier attempts to compute the absorption rate
by nonextremal black branes were made in Refs. [22]. As
in the extremal case, we search for the solution in several
regions and match the result wherever the regions overlap.
Let us go from small r to large r, starting from the horizon
r � r0. The first region is the one just outside the horizon:
r . r0, r 2 r0 ø r0. In this case Eq. (11) has the form

f00 1
f0

r 2 r0
1

l2

16
f

�r 2 r0�2
� 0 , (12)

where l � v��pT� ø 1. The solution to Eq. (12) is

f � A

µ
1 2

r0

r

∂2il�4

, (13)

where we have chosen the sign of the exponent so that the
solution corresponds to an incoming wave at the horizon.
When l is small, (13) is basically a constant, A, except for
an exponentially small region near r0. In the next region,
r0 , r ø v21 (excluding r exponentially closed to r0),
the term proportional to v2 in the left-hand side of Eq. (11)
can be dropped. Indeed,

v2r8�r4 2 r4
0 �22 ø �r 2 r0�22 (14)

due to r ø v21, and

v2r4R4�r4 2 r4
0 �22 ø �r 2 r0�22 (15)

since v ø T 	 r0R22. Equation (11) now has the form
081601-3
f00 1
5r4 2 r4

0

r�r4 2 r4
0 �

f0 � 0 , (16)

which possesses a trivial solution,

f � A , (17)

which matches smoothly with Eq. (13). Finally, in the
outermost region, r ¿ R ¿ r0, Eq. (11) is simplified to

d2f

dr2 1
5
r

df

dr
1 v2f � 0 , (18)

which can be solved in terms of the Bessel functions,

f�r� � a
J2�vr�
�vr�2 1 b

Y2�vr�
�vr�2 , r ¿ R . (19)

The regimes of validity of Eq. (17), r0 , r ø v21, and
of Eq. (19), r ¿ R, has an overlap since v21 ¿ R (this
is the consequence of R ¿ r0 and v ø T ). In order for
Eq. (19) to match with Eq. (17) in the overlapping region,
one should require

a � 8A, b � 0 . (20)

The field at large distances can be decomposed into an
incoming wave and an outgoing wave,

f�r� � 4A

∑
H

�1�
2 �vr�
�vr�2 1

H
�2�
2 �vr�
�vr�2

∏
. (21)

The absorption probability P is the ratio of the flux at
r � r0 from Eq. (13) and the flux from the incoming wave
in Eq. (21). We find

P �
p

32
v5r3

0R2. (22)

Since the absorption cross section s is related to P by [8]

s �
32p2

v5 P , (23)

we arrive to Eq. (7), which coincides with the area of the
horizon. This is very similar to the universal result for
black holes [8].

Notice that in deriving Eq. (7) we require v to be
much smaller than the Hawking temperature. The absorp-
tion cross section will deviate substantially from the zero-
frequency limit if v is of the order of T . In particular, the
next correction to Eq. (7) is of the order of v2�T2 with a
computable coefficient [21].

Discussion.—We have shown that the shear viscosity
can be computed in the strongly coupled N � 4 SYM
theory from the AdS/CFT correspondence. Now let us
try to interpret the result (10). The power of T in h is
completely fixed by the dimensionality of h and the scale
invariance of the theory. The factor N2 apparently comes
from the number of degrees of freedom in the plasma. It is
remarkable that the shear viscosity approaches a constant
081601-3
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value as one sends the ’t Hooft coupling to infinity. From
the relation h 	 ´t, one can interpret this behavior as the
indication that the “relaxation time” t remains of order
T21 (but not much smaller) in the strong coupling limit.
Since the inverse relaxation time is comparable to the en-
ergy per degree of freedom, the strongly coupled plasma
cannot be viewed as a collection of particles, and the for-
mula h 	 ´t does not apply in the strict sense. However,
one should expect that the counting of the powers of N
still works. This counting, combined with the expressions
for h is the weak-coupling [Eq. (3)] and strong-coupling
[Eq. (10)] limits, suggests that for finite ’t Hooft coupling
g2N the shear viscosity has the form

h � f�g2N �N2T3, (24)

where f�x� 	 x22 ln21�1�x� when x ø 1 and f�x� �
p�8 when x ¿ 1. It is most likely that f�x� is a mono-
tonic function of x. One way to verify this conjecture is
to compute the O �1�g2N� correction to h in the strong
coupling limit. If f�x� is monotonic, then this correction
must be positive. This is analogous to the behavior of the
free energy [20], except that at small coupling h ! `,
while the free energy remains finite.

Recalling that s�v� deviates substantially from s�0�
when v 	 T , we see that the hydrodynamic theory can de-
scribe processes occurring during times much larger than
T21, but breaks down for those whose typical time scale
is of order or less than T21. One also should expect hy-
drodynamics to work at spatial distances much larger than
T21, but not at distances of order or less than T21. This
is consistent with T21 playing the role of the relaxation
time in the limit g2N ! `. There is apparently no sepa-
ration of scales in the strong coupling regime that would
make a kinetic description possible: T21 is the only time/
length scale. Thus, the viscosity h cannot be computed
from a Boltzmann-type equation.

In this paper, we have confined our attention to the most
important transport coefficient —the shear viscosity. As
mentioned above, the bulk viscosity vanishes identically
due to the exact scale invariance of the N � 4 SYM the-
ory. It would be useful to compute other transport coef-
ficients in this theory (for example, the diffusion constant
of the R charges) at strong coupling using the AdS/CFT
correspondence.
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