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Regular Wave Propagation Out of Noise in Chemical Active Media
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A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosen-
sitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with
a spatiotemporal patterned random illumination. These experimental observations are also reproduced
numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further
analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within
the same framework we also address situations of noise-sustained propagation in subexcitable media.
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Since their discovery thirty years ago [1], target pat-
terns have constituted one of the most distinctive and visu-
ally compelling examples of self-organization in chemical
systems. Somewhat more general, control on wave ini-
tiation and propagation may have a wealth of potential
implications not only for chemical [2—4] or biochemical
systems [5,6], but extending to cardiology [7] or neuro-
physiology [8] contexts. Although unavoidably present in
any realistic situation of these scenarios, the minimization
of noise and disorder is always pursued under the rationale
that their effects may, if not destroy, at least largely mask,
the intrinsic spatiotemporal regularities of any such wave
propagation phenomena. Here, contrarily, we provide ex-
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PACS numbers: 82.40.Bj, 05.40.Ca, 47.54.+r

perimental and numerical evidence, and also an analytical
explanation, of just the opposite, now beneficial, influence,
by showing that an excitable chemical system may rectify
external fluctuations into regularly organized wave trains.
Explicitly, we will show that the photosensitive Belousov-
Zhabotinsky (BZ) reaction [9], under excitable conditions
unable to create autowaves, does maintain a target structure
when subjected to a patterned and continuously evolving
random illumination.

Moreover a theoretical framework for activator-
inhibitor models will be proposed to interpret not only this
experimental finding but the recent related one of noise-
supported waves in subexcitable media [10]. With this
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Sequence of images, (a)—(c), showing a noise-sustained target pattern in the BZ reaction. The medium is forced with a

spatiotemporal fluctuating illumination. The average light intensity corresponds to excitable conditions (Iy = 0.29 mW/cm?). By
comparison, images (a’)—(c’) correspond to a fluctuation-free case with a constant and uniform illumination fixed to the averaged
intensity Iy. Images shown in the figure correspond to an exposed area of 1.38 X 1.36 cm?. Images (a)/(b) [(a’)/(b")] are separated

by 40 s and (b)/(c) [(b")/(c")] by 20 s.
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unified perspective we highlight the specificities of
these phenomenologies in relation to other celebrated
noise-constructive effects, typical of either forced or
autonomous extended systems, i.e., array enhanced sto-
chastic resonance [11,12], taming spatiotemporal chaos
with disorder [13], noise-enhanced signal propagation
[14,15], and noise-induced synchronization to global os-
cillations for arrays of excitable units [16,17] or coherence
resonance oscillators [18,19].

Experiments were carried out using thin (0.3 mm),
squared (3 X 3 cm?) film of silica gel, in which the
light-sensitive catalyst, ruthenium-bipyridyl [Ru(bpy)],
was immobilized [9] [solution of 15% sodium silicate,
1.5 mMRu(bpy);" and 1M H,SO4] prepared as in
Ref. [20]. A solution of catalyst-free BZ reaction was
poured onto the gel (initial concentrations: 0.15M KBr,
0.34M malonic acid, 0.38M NaBrOs, and 0.48M H,SO,).
The temperature was kept constant at 25 = 1°C. The
light intensity reaching the gel governs the system ex-
citability through the production of Br~ [21,22]. Images
of the patterns, whose contrast was enhanced with an
interference filter of 460 nm, were captured in a video
recorder through a CCD camera placed vertically.

Spatiotemporal structured noise is introduced into the
system by using a computer controlled and continuously
evolving fluctuating patterned illumination, which is video
projected (from below) onto the gel film [23]. The pattern
of illumination consisted of an array of square cells
of linear size [ (I = 0.44 mm), each of them obeying
a Gaussian statistics (o = 0.14 mW/cm?) around a
prescribed reference illumination value Iy for excitable
conditions (I; = 0.29 mW/cm?). The different illumina-
tion values are reproduced through an eight-bit gray scale
between 0 and 255 that is filtered by means of a video
projector according to a calibration curve. All the cells
are independently updated according to the smallest time
provided by the computer (100 ms), to reproduce fluctua-
tions with extremely small correlation time (mimicking an
effective white noise limit). To assure a radial distribution
of the refractory time, a central black spot (/p = O,
R = 1.5 mm) (whose size was found to be critical) was
projected into the sample until a circular wave emerged
from this local perturbation. Structured light fluctuations
were subsequently imposed all over the system, and when
prescribed above an intensity threshold, repeated wave
nucleation, leading to a circular wave train, was observed,
as shown in Fig. 1. For the sake of comparison, we
include in the same figure the case of uniform and steady
illumination at the same reference value. As expected, a
single autowave propagating from the initial condition is
found in the absence of fluctuations.

Actually, repeated wave emission could be sustained
only for an intermediate range of fluctuation intensities.
For low noise level, no periodic wave emission was
observed. Contrarily, under a too high noisy environment,
sustained wave initiation was possible but immediately
waves were continuously broken into scattered fragments
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progressively occupying the whole medium. Quantitative
results, summarized in Fig. 2, reproduce a monotonous
decrease of the emission period as the noise level in-
creases. Contrarily, there exists a critical noise intensity
approaching which the emission period diverges. For
lower intensity fluctuations the system will stay forever
under purely excitable conditions. Regarding the role
of the cell size, the best results were observed when
comparable to the wave width. With half this value, which
corresponds to the size of an illumination pixel, waves
hardly nucleated, whereas for larger sizes no waves were
generated, probably due to the progressive loss of the
patterned structure of the noise.

Numerical studies of noise-sustained targetlike patterns
were conducted using the photosensitive versions [24] of
the complete three-variable Oregonator model [25], as well
as its reduced form [26] that follows from the adiabatic
elimination of the rapidly varying Br~ concentration. Al-
though both reproduce the experimental observations, on
what follows we limit ourselves to this latter level of
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FIG. 2. Dependence of the wave nucleation period on the noise
intensity: (a) experimental results, (b) numerical results obtained
from the two-variable dimensionless Oregonator model. Contin-
uous lines are simply to guide the eye. In the experimental case
periods are determined by averaging the time intervals between
consecutive waves of the BZ reaction. In the numerical situation,
periods are computed from successive circular waves passing
through four square symmetrically distributed points separated
150 pixels from the center position. An average is taken over two
realizations of the initial condition. The model equations were
integrated in a two-dimensional rectangular grid of 320 X 320
pixels (unit grid size A = 0.2) with no-flux boundary conditions.
The set of parameters were € = 0.03, ¢ = 0.0015, f = 1, and
o=1
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modelization since the theoretical considerations proposed
below may widen their scope when applied to activator-
inhibitor schemes and even admit in this case a fully ana-
lytic formulation. The model equations thus read

ou = 6Viu + l(u—uz—(fv +¢)u—q>,
€ u+gq (1)

v =u — v,

where the variables u and v stand, respectively, for the di-
mensionless concentrations of HBrO, and Ru(bpy)§+. o
is the diffusion coefficient for u, € and g are parameters
related to the kinetics of the reaction, f is an adjustable
stoichiometric factor, and ¢ is the parameter proportional
to the illumination intensity. Corresponding to the experi-
ments above, the fluctuating excitability was introduced
through a random distribution of the local values of ¢.
The pattern consisted of an array of square cells of 1 X 1
pixels (0.2 dimensionless space units), each of them obey-
ing a Gaussian statistics around a fixed reference value
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¢o in the excitable range (¢ = 0.001). All the cells were
independently updated every time step (0.0005 dimension-
less time units) to simulate uncorrelated fluctuations (white
noise limit) [27]. Using initial preparations similar to those
in the experiments, conditions to observe periodic wave
emission were also found for an intermediate range of fluc-
tuation intensities. Actually, a series of simulations carried
out to determine the dependence of the observed periodic-
ity of the emitted waves on noise intensity is also repro-
duced in Fig. 2, showing similar trends to those observed
in the experiments. A particular realization of such nu-
merical simulations is displayed in panel (a) of Fig. 3, as
compared with the noise-free case for the same ¢ value.

The keystone to theoretically interpret the phenomenon
just reported consists in realizing that when noise is in-
troduced through the illumination parameter in the model
equations, a random term left from the fluctuating zero
mean part enters multiplicatively into the dynamics of the
activator variable (in our case the HBrO,) [28]. How-
ever, due to this nonlinear coupling, a systematic genuine
nonzero contribution arises when averaging such a noisy
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Diagram classifying the different dynamical regimes of the two-variable Oregonator model (dashed lines) Eq. (1) and

the effective two-variable model (solid lines) Eq. (2). In the graph on the left the boundaries between oscillatory and excitable
regimes are shown. In the graph on the right the boundaries among excitable, subexcitable (shrinking of 2D wave segments),
and nonexcitable (collapse of 1D waves) conditions are shown. Panels accompanying the diagram are representative of the three
noise-mediated transitions referred to in the paper for a particular value of 0> = 1.4 X 107*. They represent three different couples
of noise-free/noise-forced systems, each panel with the same averaged value of the illumination parameter (Pexcitabie/osc. = 0.005,
D subexcitable/exe. = 0.087, Pnonexcitable/subexe. = 0.096). Note that panel (b), at variance with (a) and (c), is built up from a superposition
of snapshots. Concentrations of u are represented by gray levels, higher/smaller concentration values corresponding to lighter/darker
color pixels.
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term in relation to the dynamics of the activator variable.
Given the finite, although small, time and length scales of
the experimental fluctuations and for moderate noise in-
tensities, one can incorporate the dominant noise contri-
butions which correspond to the lowest order term of an
expansion on these parameters as a correction to those ki-
netic terms, discarding additional nonsystematic fluctuat-
ing terms which average to zero [29]. As a result we finally
end up with an effective totally deterministic two-variable
Oregonator model whose explicit equations read

ou = 6V2u + %(u—uz—(fv +¢0)u—q>

u+q
l(o’z 2¢g u—q> )
6 2

J’_ R
A2 €(u+q)Pu+gq

v =u-—v,

in terms of the noise intensity o> and the pixel size A.
Once in this form, the excitable and oscillatory properties
of such a renormalized model are easily computed. This
whole procedure enables us, as shown in Fig. 3, to predict
a noise intensity dependent shift of the boundaries separat-
ing the dynamical regimes (oscillatory, excitable, subex-
citable, and nonexcitable) of such an effective scheme as
compared to the noise-free Oregonator model. Notice that,
in fact, such a theoretical framework enables us to interpret
not only the appearance of noise-induced target patterns,
but related scenarios of noise-supported wave propaga-
tion, both in subexcitable [panel (b)] [10] and nonex-
citable conditions [panel (c)] of Fig. 3 [30]. In other words
an excitable (respectively, subexcitable or nonexcitable)
propagating condition in a noise-free environment turns
into an oscillatory (respectively, excitable or subexcitable)
situation when external uncorrelated spatiotemporal fluc-
tuations of zero mean and appropriate intensities are su-
perimposed on the illumination parameter.

As a final comment, note that the whole argument just
presented highlights the delicate coupling between noise
and the nonlinearities of the chemical system, which,
rather than resulting into new noise-induced periodicities,
evoke its intrinsic “eigenvalues,” both temporal (emission
frequency) and spatial (period of the wave train). In
this respect, this theoretical interpretation is essentially
different from those based on barrier crossing dynamics
arguments that are commonly invoked to explain the
statistical periodicities observed in related stochastic
resonance [11] or coherence resonance [19] phenomena
in spatially extended systems.
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