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Binding of Similarly Charged Plates with Counterions Only
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Similarly and highly charged plates in the presence of multivalent counterions attract each other and
form electrostatically bound states. Using Monte-Carlo simulations, we obtain the interplate pressure in
the global parameter space. The equilibrium plate separation, where the pressure changes from attractive
to repulsive, exhibits a novel unbinding transition. A systematic and asymptotically exact strong-coupling
field theory yields the bound state from a competition between counterion entropy and electrostatic
attraction, in agreement with simple scaling arguments and simulations.
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Experimentally, it has been known for a long time that
highly charged planar surfaces attract each other in the
presence of multivalent counterions, inducing bound states.
This electrostatic attraction restricts the swelling of cal-
cium clay particles [1], leads to much reduced water up-
take of charged lamellar membrane systems [2], and has
also been observed with the surface force apparatus [3].
Monte-Carlo (MC) simulations confirmed that for a given
surface charge density there exists a threshold counterion
valence above which attraction can be observed over some
range of plate separations [4].

Theoretically, these observations came as a surprise,
since the mean-field or Poisson-Boltzmann (PB) theory
predicts only repulsive forces between similarly charged
objects [5]. This contradiction resulted in an immense
theoretical activity, which aimed at understanding the sim-
plified model of two uniformly and similarly charged pla-
nar surfaces interacting across a gap of width d filled
with pointlike counterions only. Clearly, reality is much
more complicated due to additional interactions and ef-
fects, but even this model, which we consider in this paper,
is quite challenging. A number of approaches were pro-
posed which incorporate counterion correlations that are
neglected within PB. The first were integral-equation the-
ories [6], perturbative expansions around the PB theory
[7,8], and local density-functional theory [9], which com-
pare well with simulation results and exhibit attraction. If
the two plates are far apart from each other, the counterion
clouds can be viewed as condensed on the plates, and the
resulting simplified model can be solved within a Gaussian
[10] or harmonic-plasmon approximation [11]. These ap-
proaches either involve numerics and do not provide much
physical insight, or they are valid for asymptotically large
plate separations.

In this paper, we focus on the mechanism for electro-
static attraction between similarly charged plates and, in
particular, on the bound state, which occurs for finite plate
separations. To do this, we introduce a novel field the-
ory, asymptotically exact in the strong-coupling (SC) limit
(equivalent to low temperatures, large plate-charge density
s, and large counterion valence q), which corresponds to a
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systematic virial (low-density) expansion. The SC theory
is valid in the limit when PB breaks down and naturally
yields electrostatic attraction between similarly charged
plates. To check these theoretical results, we have per-
formed extensive MC simulations in the complete parame-
ter space. In the SC limit, we obtain quantitative agreement
of MC density and pressure profiles with our SC theory,
whereas PB theory describes the numerical data well in the
opposite limit of weak coupling.

The leading term of our SC theory is the first virial term
and thus corresponds to the partition function of a single
counterion sandwiched between two charged plates, which
we now explicitly evaluate, thereby providing some physi-
cal insight into the mechanism for electrostatic attraction.
That this simple calculation in fact is exact in the SC limit
will be demonstrated below in a formal field-theoretic cal-
culation and by comparison with MC results. Denoting the
distance between the counterion and the plates (of area A)
as x and d 2 x, respectively, we obtain for the electrostatic
interaction between the ion and the plates (note that all en-
ergies and forces are given in units of kBT) for d ø

p
A

the results W1 � 2p�Bqsx and W2 � 2p�Bqs�d 2 x�,
respectively, as follows from the potential at an infinite
charged wall and omitting constant terms. The Bjerrum
length �B � e2�4p´kBT is the distance at which two unit
charges interact with kBT . The sum of the two interactions
is W112 � W1 1 W2 � 2p�Bqsd which shows that (i) no
pressure is acting on the counterion since the forces ex-
erted by the two plates exactly cancel, and (ii) that the
counterion mediates an effective attraction between the two
plates. The interaction between the two plates is propor-
tional to the total charge on one plate, As, and for d øp

A given by W12 � 22pA�Bs2d. Since the system is
electroneutral, q � 2As, the total energy is W � W12 1
W1 1 W2 � 2pA�Bs2d, leading to an electrostatic pres-
sure Pel � 2≠�W�A��≠d � 22p�Bs2 per unit area. The
two plates attract each other. The entropic pressure due
to counterion confinement is Pen � 1�Ad � 2s�qd. The
equilibrium plate separation is characterized by zero total
pressure, Ptot � Pel 1 Pen � 0, leading to an equilibrium
plate separation d� � 1�p�Bqs. In fact, this simple
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one-particle derivation for the attraction between charged
plates is conceptually simpler than the PB result of repul-
sion, because the latter case involves many-body effects.
Surprisingly, the results for Ptot and d� become exact in
the SC limit, as we will demonstrate in the following.

To proceed with our systematic field theory, consider the
partition function for N counterions confined between two
parallel plates at distance d:

ZN �
1

N !

NY
j�1

Z
drj u�zj�u�d 2 zj�e2H , (1)

where the Heaviside function is defined by u�z� � 1 for
z . 0 and zero otherwise. Introducing the counterion den-
sity operator r̂�r� �

PN
j�1 d�r 2 rj�, the Hamiltonian can

be written in units of kBT as

H �
�B

2

Z
dr dr0�qr̂�r� 2 sd�z� 2 sd�d 2 z��

3 y�r 2 r0� �qr̂�r0� 2 sd�z0� 2 sd�d 2 z0��

2
Z

dr r̂�r�h�r� , (2)

where y�r� � 1�r is the Coulomb interaction, and the field
h has been added to calculate density distributions later on.
Rescaling all lengths by the Gouy-Chapman length m �
1�2p�Bqs (which is the distance at which a counterion
and a charged wall interact with kBT ) according to r �
mr̃ and d � md̃, the Hamiltonian becomes

H �
1

8p2J

Z
dr̃ dr̃0�2pJr̂�r̃� 2 d�z̃� 2 d�d̃ 2 z̃��

3 y�r̃ 2 r̃0� �2pJr̂�r̃0� 2 d�z̃0� 2 d�d̃ 2 z̃0��

2
Z

dr̃ r̂�r̃�h�r̃� , (3)

and thus depends only on the coupling parameter J �
2pq3�2

Bs. At this point, we employ a Hubbard-
Stratonovitch transformation, similar to previous imple-
mentations of a field theory for charged systems [12],
followed by a Legendre transformation to the grand-
canonical ensemble, Q �

P
N lNZN , introducing the

fugacity l. The inverse Coulomb operator follows from
Poisson’s law as y21�r� � 2=2d�r��4p, which leads to

Q �
Z Df

Zy

exp

Ω
2

1
8pJ

Z
dr̃��=f�r̃��2 2 4ıd�z̃�f�r̃�

2 4ıd�d̃ 2 z̃�f�r̃�

2 4Lu�z̃�u�d̃ 2 z̃�eh�r̃�2ıf�r̃��
æ

, (4)

where we introduced the notation Zy �
p

dety and the
rescaled fugacity L is defined by L � 2plm3J �
l��2ps2�B�. The field f is the fluctuating electrostatic
potential [12]. The expectation value of the counterion
density, r�r̃�, follows by taking a functional derivative with
respect to the generating field h, r�r̃� � d lnQ�dh�r̃�m3,
giving rise to the rescaled density,
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r̃�r̃� �
r�r̃�

2p�Bs2 � L�e2ıf�z̃�	 . (5)

The normalization condition for the counterion distribu-
tion, m

R
dz̃ r�z̃� � 2s�q, which follows from the defini-

tion of the grand-canonical partition function, leads to

L
Z d̃

0
dz̃�e2ıf�z̃�	 � 2 , (6)

and thus fixes the value of L. Let us first repeat the saddle-
point analysis, which, because of the structure of the action
in Eq. (4), should be valid for J ø 1 [12]. The saddle-
point equation reads ≠2f�z̃��≠z̃2 � 2ıLe2ıf�z̃�, with the
solution ıf�z̃� � 2 ln cos�L1�2�z̃ 2 d̃�2��. The normal-
ization condition Eq. (6) leads to the equation
L1�2 tan�d̃L1�2�2� � 1, which is solved by L 
 2�d̃ 2

1�3 for d̃ ø 1 and L 
 p2�d̃2 for d̃ ¿ 1. From Eq. (5),
the leading term of r̃ is given by the well-known PB result:

r̃�z̃� � 1� cos2�L1�2�z̃ 2 d̃�2�� 1 O �J� , (7)

with corrections proportional to the coupling constant J

[12]. Let us now consider the opposite limit, when the
coupling constant J is large and the saddle-point approxi-
mation breaks down. Since the fugacity term is bounded,
as evidenced by Eq. (6), one can expand the partition func-
tion (and also all expectation values) in powers of L�J

(which is equivalent to a virial expansion). For the expec-
tation value determining the density via Eq. (5), the lead-
ing two orders in the virial expansion are

�e2ıf�z̃�	 � e2Jy�0��2 1
Le2Jy�0�

2pJ

Z
dr�e2Jy�r2r̃� 2 1� .

The normalization condition Eq. (6) can then be solved
by an expansion of the fugacity L in inverse powers of
the coupling constant, L � L0 1 L1�J 1 . . . , and the
leading two terms of the density distribution are

r̃�z̃� �
2
d̃

1
2

d̃J
��z̃ 2 d̃�2�2 2 d̃2�12� . (8)

The leading term, r̃0 � 2�d̃, is the first virial contribution,
which originates from the one-particle partition function,
and therefore coincides with the scaling result obtained in
the beginning. The second leading term gives a contribu-
tion of maximal magnitude d̃�3J and therefore dominates
the leading term for d̃�J1�2 � d�a . 1, where the mean
lateral distance between ions, a, is defined by 2s�q �
1��pa2�. This shows that the virial expansion, and, in par-
ticular, the SC result, should be valid as long as the plate
separation d is smaller than the lateral distance between
ions a, or, in rescaled units, for d̃ , J1�2. In Fig. 1a
we show density profiles obtained from MC simulations
[13] for small coupling parameter J � 0.5 for various
plate distances, which are well described by the PB pro-
files [Eq. (7)] shown as solid lines. Figure 1b shows that
for J � 100 PB (solid lines) is inadequate [14]. For d̃ �
1.5 (open diamonds) we have d�a � 0.15, and the leading
078301-2
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FIG. 1. MC results for the rescaled counterion density d̃r̃ as
a function of the rescaled distance from the wall z�d in the
(a) PB limit for J � 0.5 and in the (b) SC limit for J � 100
for various plate separations d̃ � d�m � 1.5 (open diamonds),
d̃ � 10 (open stars), and d̃ � 30 (open triangles). In (a) MC re-
sults agree well with the corresponding PB predictions [Eq. (7),
solid lines], whereas in (b) results for d̃ � 1.5 agree with the
SC prediction r̃ � 2�d̃ (dashed line) and for d̃ � 30 with a
double-exponential curve (dot-dashed line, see text).

term of Eq. (8) is indeed accurate. For d̃ � 10 (open stars)
we find d�a � 1; the density profile is neither described by
Eq. (8) nor Eq. (7). Finally, for d̃ � 30 (open triangles) we
find d�a � 3; the two layers are decoupled and the den-
sity profile is described by a double-exponential r̃�z̃� �
�e2z̃ 1 ez̃2d̃���1 2 e2d̃� (dot-dashed line), which is the
superposition of the density profiles of two isolated
charged surfaces in the SC limit [15]. The crossover from
PB to SC is demonstrated in Fig. 2, where we plot density
profiles for fixed separation d̃ � 2 for various coupling
parameters J.

Using the contact value theorem, the pressure P between
the two plates, which follows from the partition function
via P � ≠ lnQl�Am≠d̃, is related to the counterion den-
sity at a plate, r̃�d̃�, by [4,12]

P̃ � P��2p�Bs2� � r̃�d̃� 2 1 . (9)

Numerically, the contact ion density r̃�d̃� is obtained from
the density profiles by extrapolation. In Fig. 3 we show
numerical pressure data for selected values of J. Attrac-
tion (negative pressure) is obtained for J . J� � 12
and intermediate distances only, as evidenced by the inset
where the pressure profile for J � 17 is shown. The nu-
merical pressure for J � 0.5 (open diamonds) agrees well
with the PB prediction (thick solid line), which from
078301-3
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FIG. 2. MC results for rescaled counterion density profiles
r̃ � r�2p�Bs2 for fixed plate separation d̃ � d�m � 2 as
a function of the rescaled distance z̃ � z�m from one wall.
Symbols correspond to coupling parameters J � 0.5 (open dia-
monds), J � 10 (filled diamonds), J � 100 (open stars), and
J � 105 (open triangles), exhibiting clearly the crossover from
the PB prediction [solid line, Eq. (7)] to the SC prediction r̃ �
2�d̃ [broken line, Eq. (8)].

Eqs. (9) and (7) is given by P̃ � L with L determined
by L1�2 tan�d̃L1�2�2� � 1. The SC prediction for P̃ is
obtained by combining the leading term of Eqs. (8) and
(9), yielding P̃ � 2�d̃ 2 1, from which the equilibrium
separation, determined by P̃ � 0, follows as d̃� � 2.
Incidentally, this is exactly the scaling prediction for the
pressure derived in the beginning of this paper. The small
distance range of most data and the complete pressure
data for J � 105 (open triangles) are well described by
the SC prediction (broken line), demonstrating again that
the SC result is valid for d̃ , J1�2.

Finally, combining all pressure data, we obtain the
global phase diagram shown in Fig. 4, featuring attractive
(negative) interplate pressure at intermediate distances and
above a threshold coupling of J� � 12. In the limit of
large J, the phase boundary saturates at d̃� � 2, in agree-
ment with our scaling argument and the leading SC term.
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FIG. 3. MC results for the rescaled pressure P̃ as a function
of the plate separation d̃ for the same parameter values as in
Fig. 2 (and J � 17 and 20, filled triangles and open squares,
respectively), compared with the PB prediction P̃ � L (thick
solid line) and the SC prediction P̃ � 2�d̃ 2 1 (broken line).
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FIG. 4. MC phase diagram showing regions of attractive
and repulsive pressure as a function of plate separation d̃ and
coupling strength J. Attraction occurs only for intermediate
distances and J . J� � 12. The equilibrium plate separation
(determined by minimization of the free energy, solid line and
filled symbols) exhibits a discontinuous unbinding to infinity at
J�� � 17 and saturates at d̃� � 2 for J ! `.

For large separation reentrant repulsion is observed. The
equilibrium plate separation (denoted by filled symbols
and a solid line) is determined by a Maxwell construction
on the pressure profile, or, equivalently, by minimization of
the free energy (which numerically is determined by inte-
grating the pressure). As J decreases from large values,
this equilibrium separation grows and shows a discon-
tinuous jump to infinity at J�� � 17 (the corresponding
pressure profile is shown in the inset of Fig. 3). For J ,

J��, the lower branch of the broken line (open symbols)
corresponds to a local, metastable free-energy minimum
while the upper one corresponds to a free-energy maxi-
mum. This constitutes a novel unbinding transition, which
experimentally is observable with charged lamellar or clay
systems by raising the temperature. The reentrant transi-
tion from attraction to repulsion at large separations, the
upper branch of the broken curve, is expected to scale as
d̃ � J (plus logarithmic corrections) [7,8], as denoted by
the straight broken line and in agreement with the MC
data.

The range of validity of our novel SC theory is d̃ ,
p

J

which includes most of the equilibrium-plate-separation
line in Fig. 4. It follows that the bound state is (i) well
characterized by our SC theory (as demonstrated by the
fact that the equilibrium plate separation is for the most
part close to d̃� � 2) and (ii) the counterion distribution
is indeed two dimensional [16,17], d , a, though Wigner
crystallization (which occurs at J 
 15 600 in the limit
d̃ ! 0) is not required to find attraction. Correlations be-
tween counterions, except the lateral exclusion correlation
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which keeps ions apart, are unimportant in the bound state
for large J, but of course play an important role for in-
termediate values of J. The range of validity of PB is
d̃ . J lnJ for J . 1 and d̃ . 1 for J , 1, as follows
by comparison of the PB and one-loop-correction pressures
[7,8]. Between the PB and SC ranges of validity is there-
fore only a small region where none of these asymptotic
theories is valid.
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