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The information processing abilities of a multilayer neural network with a number of hidden units
scaling as the input dimension are studied using statistical mechanics methods. The mapping from the
input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden
layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the
space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of
the number of implementable Boolean functions. The generalization behavior is smooth for continuous
couplings and shows a discontinuous transition to perfect generalization for discrete ones.
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Statistical mechanics investigations of artificial neural
networks continue to play a stimulating role in the sci-
entific dialogue between disciplines as diverse as neuro-
physiology, mathematical statistics, computer science, and
information theory. In particular, the study of feed-forward
neural networks pioneered by Gardner [1] has revealed a
variety of interesting results on how these systems may
learn different tasks of information processing from ex-
amples (for a review, see [2]). Of particular importance in
this respect are multilayer networks (MLN) which are able
to implement any function between input and output [3].
This makes them attractive candidates for many practical
applications.

Although it is well known that very many hidden units
are needed in order to realize the computational power
of MLN, statistical mechanics studies have so far been
mostly restricted to systems with very few hidden units
compared to the number of inputs [4]. In the present
Letter we overcome this limitation and study the storage
and generalization abilities of a tree MLN in which the
size of the hidden layer scales in the same way as the input
dimension.

We consider a MLN with N binary hidden units
ti � 61, i � 1, . . . ,N feeding a binary output s �
sgn�

P
i Jiti� through a coupling vector J � J1, . . . , JN .

The hidden units are determined via Boolean functions
ti � Bi�Si� by disjoint sets of inputs Si � Si1, . . . ,SiL
containing L elements each. We are interested in the limit
N ! ` with L remaining constant. In order to keep the
connection with neural network architectures we restrict
ourselves to symmetric Boolean functions characterized
by Bi�2Si� � 2Bi�Si �. There are 22L21

such functions
with L inputs.

In order to investigate the storage and generalization
properties of the network it is necessary to quantify the
flexibility in the input-output mapping when adapting the
Boolean functions Bi and the couplings Ji . The statistical
mechanics approach to this problem (for a detailed discus-
sion, see [2]) considers a set of aLN random inputs j

m
i ,

m � 1, . . . , aLN , the components j
m
i1, . . . , j

m
iL of which
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are independent, identically distributed random variables
with zero mean and unit variance. One then determines
the typical fraction of the phase space spanned by those
Boolean functions and couplings that are able to map all
inputs on outputs sm � 1. This typical fraction is given
by exp�Ns� with the quenched entropy

s � lim
N!`

1
N

**Z
dm �J� Tr

�Bi�

aLNY
m�1

u

√X
i

JiBi�j
m
i �

!++
�jm

i �
.

(1)

Here dm�J� is the proper measure in the space of couplings
J and the trace denotes the sum over all symmetric Boolean
functions. The product in the integrand is nonzero only if
the arguments of all the u functions are positive and hence
projects out the admissible part of the phase space.

The double angle in (1) stands for the average over the
input distribution. To perform this average the replica
method relying on the identity ��lnx�� � limn!0����xn�� 2

1��n	 may be used. Analytic progress can be made by em-
ploying standard techniques [2] and introducing an overlap
between two solutions in the combined space of couplings
J and Boolean functions Bi of the form

qab �
1
N

X
i

Jai J
b
i ��Bai �j �Bbi �j ���j . (2)

Exploiting the fact that the average in (2) is over a single,
L-component vector j only and therefore involves only
a finite number of terms and assuming replica symmetry,
qab � q for a fi b, we find for the quenched entropy

s � extr
q,q̂

�GC�q, q̂� 1 GS�q̂� 1 aLGE�q�	 . (3)

The explicit expressions for the functions GC, GS , and
GE depend on L, the constraints on J and on whether the
storage or the generalization problem is addressed.

Let us begin with the storage problem by asking for the
storage capacity ac defined as the maximal value of a for
which the system can still realize all desired input-output
mappings with probability 1. Performing the replica limit
© 2001 The American Physical Society 078101-1
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with the number of replicas tending to zero characteristic
for this problem we find

GE�q� �
Z
Dt lnH�Qt� (4)

with the abbreviations Dt � dt e2t2�2�
p

2p, H�x� �R`
x Dt, and Q�

p
q��1 2 q�. The expressions for GC and

GS depend on the constraints on the coupling vector J.
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A particular simple case is given by Ising couplings
Ji � 61. From the symmetry of the Boolean functions
it is clear that it is sufficient to consider Ji � 1 for all
i. Consequently all flexibility of the network rests in the
choice of the Boolean functions between input and the
hidden layer and q is the sole overlap in the space of
these Booleans. We then find GC � q̂�1 2 q��2, where
q̂ denotes the conjugate order parameter to q. Moreover,
using the identity
Tr
�Bi�

exp

√s
q̂

2L21

X
j

zjBi�j �

!
�

Y
j

"
2 cosh

√s
q̂

2L21 zj

!#
(5)
with the sums and products over j running over all 2L21

configurations of j with j1 � 1 we get

GS � 2L21
Z
Dz ln

"
2 cosh

√s
q̂

2L21
z

!#
. (6)

Under the transformations q̂ � 2L21q̂ and a � 2L21a�L
the resulting expression for the entropy maps exactly on the
result for the Ising perceptron corresponding to L � 1. We
may therefore use the well-known results for this case [6].
The storage capacity is hence overestimated by the replica
symmetric expression and the correct result

ac�L� � ac�1� 2L21�L 
 0.83 2L21�L (7)

is given by the value of a at which the entropy s�a� turns
negative. The storage capacity is proportional to the loga-
rithm of the number of implementable Boolean functions.
This result is in accordance also with the rigorous upper
bound ac # 2L21�L resulting from the annealed entropy
sann � �2L21 2 aL� ln2. As in the case of the Ising per-
ceptron this bound is related to information theory. The
full specification of the network with all Ji � 1 requires
N 2L21 bits of information necessary to pin down the N
Boolean functions Bi . Therefore the machine cannot store
more than N 2L21 bits and ac cannot exceed 2L21�L.

Figure 1 compares the analytical result ac�L � 3� 

1.11 with numerical simulations using exact enumerations.
Even for the small sizes accessible to this numerical tech-
nique we find a steepening of the transition with increasing
N and a crossing point of the curves close to the theoreti-
cal prediction.

It is possible to generalize the above analysis to the case
of discrete couplings with finite synaptic depth l of the
form Ji � 61�l, 62�l, . . . , 61 by building on the analy-
sis of the analogous case for the perceptron [7,8]. In this
case the additional order parameter q̄ �

P
i�J

a
i �2�N , and

its conjugate ˆ̄q, must be introduced. For GE we again
find (4) where now Q �

p
q��q̄ 2 q�. Moreover, GC �

2 ˆ̄qq̄ 1 q̂q�2 and
GS �
Z Y

j

Dzj ln Tr
J

exp

"
2

√
q̂
2

2 ˆ̄q

!
J2

# Y
j

2 cosh

√
J

s
q̂

2L21 zj

!
,

with TrJ denoting the trace over the 2l possible values of
the couplings Ji. Using these results we have numerically
calculated the storage capacity ac�l� for the simplest case
L � 3 as a function of the synaptic depth l. The results
are shown in Fig. 2. Starting from ac 
 1.11 for the Ising
case, l � 1, the capacity increases monotonically with l.
It is rather difficult to compare these analytical findings
with numerical simulations since the effects of the finite
synaptic depth do not show up at the small values of N
accessible to exact enumerations [9].

To complete the analysis of the storage properties we
analyze the case of continuous couplings J between hid-
den and output layers. It is convenient to eliminate the
additional order parameter k necessary in this case to
enforce the normalization J2 � N by introducing Q̂ �
q̂��k 1 q̂�. Within replica symmetry the quenched en-
tropy s is then again of the form (3) with GC � ln�1 2

Q̂��1 1 Q2�	�2, GE given by (4), and the extremum is
now with respect to Q and Q̂. Moreover
GS �
Z Y

j

Dzj ln Tr
B

exp

(
Q̂
2L

"X
j

zjB�j �

#2)
. (8)

The storage capacity ac can be obtained from these ex-
pressions in the limits Q ! `, Q̂ ! ` corresponding to
q ! 1. This limit indicates that different solutions of the
storage problem may at most differ in a nonextensive num-
ber of components Ji and Boolean functions Bi . We find
GE � 2Q2�4 and GS � Q̂�1�2 1 �2L21 2 1��p	 giv-
ing rise to

aRSc �
2 1

4
p �2L21 2 1�
L

. (9)

For L � 3 this yields aRSc � 2�3 1 4�p 
 1.94 which
is included as a horizontal line in Fig. 2. From the scaling
of the order parameters describing the case of finite synap-
tic depth we expect that the results for the storage capac-
ity should converge to the value obtained for continuous
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FIG. 1. Fraction f of 3aN random input-output mappings im-
plementable by a MLN with 3N inputs and N hidden units as
a function of a for N � 3 (squares) and N � 5 (circles). The
couplings between hidden units and output are fixed to Ji � 1
for all i and enumerations are performed over all combinations
of symmetric Boolean functions Bi between input and the hid-
den layer. For every value of a, 200 input realizations were
averaged over. The solid line gives the analytical result describ-
ing the limit N ! `.

couplings if l ! `. From Fig. 2 it can be seen that this
asymptotic approach is likely to be very slow. This is simi-
lar to MLN with a few hidden units [10].

It is possible to derive an upper bound for ac as has
been done for MLN with a finite number of hidden units
[11]. For a fixed set j

m
i , m � 1, . . . , aLN of inputs we

can generate at most 2N�2L2121� different configurations ti
of hidden units by using different combinations of Boolean
functions Bi . Since the mapping from the hidden layer to

0 2 4 6 8 10
l

1

1.2

1.4

1.6

1.8

2

αc

FIG. 2. Storage capacity of a MLN with N ! ` hidden units
and 3N inputs with the couplings Ji between the hidden layer
and output taking 2l discrete values. The inputs are mapped to
the hidden layer by symmetric Boolean functions Bi . The line
gives the result for continuous couplings Ji .
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the output is performed by a perceptron, each hidden con-
figuration gives rise to the desired output with probability
C�p,N��2p , where C�p,N� is the number of dichotomies
calculated in [12]. Neglecting correlations between the dif-
ferent hidden configurations and using p � aLN we find
for N ! ` that the solution aMD of the equation

�2L21 2 1� ln2 � �aL 2 1� ln�aL 2 1� 2 aL ln
aL
2
(10)

represents an upper bound to the storage capacity ac. For
L � 1 we get aMD � 2 as expected, for L � 3 we find
aMD 
 2.394, and for large L the asymptotic behavior is
aMD � 2L21�L 1 ln2. Contrary to what is known for
MLN with a finite number of hidden units [4], the replica
symmetric result (9) for the storage capacity is below this
upper bound for L � 3 and shows the same scaling for
large L.

Nevertheless we expect that the replica symmetric re-
sult (9) overestimates the storage capacity as is known for
other types of MLN [4]. For large storage ratios a the so-
lution space is likely to be disconnected, and it becomes
impossible to determine its volume by introducing a single
overlap scale (2) only. An improved characterization of the
situation can be obtained using the well-known technique
of replica symmetry breaking [13]. This problem will be
addressed in future work [14].

Finally let us elucidate the generalization problem, i.e.,
the ability of the network to infer a rule from examples.
To this end we consider as usual two networks of the same
type with the couplings and Boolean function of one of
them (the “teacher”) fixed at random. The other network
(the “student”) receives a set of randomly chosen inputs
j

m
i , m � 1, . . . , aLN together with the corresponding out-

puts s
m
T generated by the teacher. The task for the student

is to imitate the teacher as closely as possible. The success
in doing so is quantified by the generalization error ´ de-
fined as the probability that a newly chosen random input
is classified differently by teacher and student.

The statistical mechanics analysis of the generaliza-
tion problem builds again on the expression (1) for the
quenched entropy with the number of replicas now tend-
ing to 1 rather than to 0 [2,15]. A nice feature of this limit
is that replica symmetry is known to be stable. The order
parameter q defined in (2) now gives the typical overlap
between teacher and student and determines the general-
ization error ´ in a simple way. In the present situation we
have the standard relation ´ � �arccosq��p. Moreover,
(4) is replaced by

GE�q� � 2
Z
Dt H�Qt� lnH�Qt� . (11)

For Ising couplings, Ji � 61, the problem can again be
mapped exactly on the Ising perceptron. Correspondingly
there is a discontinuous transition to perfect learning [16];
i.e., ´ � 0 for a . ad with ad � 1.24 2L21�L. This
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transition occurs when all Boolean functions of the student
“lock” onto the corresponding input-hidden mappings of
the teacher.

In the case of continuous couplings we find instead
GC � Q2Q̂���1 1 Q2� �1 2 Q̂�	 and

GS �
1
2

ln�1 2 Q̂�

1

q
1 2 Q̂

Z Y
j

Dzj g�zj � lng�zj � , (12)

where

g�zj � � Tr
B

exp

"
Q̂
2L

√X
j

zjB�j �

!2#
. (13)

For small a this gives rise to ´ � 1�2 2 aL��p22L21�
which coincides with the result for the perceptron for
L � 1, as it should. With increasing L the initial decay
of the generalization error becomes slower, reflecting the
increasing complexity and storage abilities of the network.
There is no retarded learning because of the nonzero cor-
relation between hidden units and output [17]. There is
also no discontinuous drop of the generalization error at
some intermediate value of a which would occur if an ex-
tensive fraction of student Boolean functions locked onto
their teacher counterparts. Finally, for large a we find
´ � 0.625��La�. This is identical to the asymptotic be-
havior of a perceptron with N inputs and would hence oc-
cur if all Boolean functions between teacher and student
were matched and only the hidden to output couplings had
still to be adapted. For continuous couplings we therefore
find a smooth generalization behavior characterized by a
gradual freezing of the degrees of freedom associated with
the Boolean functions and an asymptotic decay dominated
by the fine-tuning of the student couplings between hidden
layer and output.

In conclusion, we have quantitatively characterized the
storage and generalization abilities of a multilayer neural
network with a number of hidden units scaling as the in-
put dimension. The mapping from the input to the hidden
layer is realized by symmetric Boolean functions with L
inputs. The storage capacity is found to be proportional
to the logarithm of the number of these Boolean functions
divided by L. The more conventional case in which the
hidden units are the outputs of perceptrons with couplings
wi can also be analyzed [14]. In this case the identity (5) is
to be replaced by somewhat long and unwieldy expressions
resulting from the restriction of the trace to linear separable
Boolean functions. Anticipating that the above scaling of
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the storage capacity persists and observing that the loga-
rithm of the number of Boolean functions which can be
implemented by a perceptron with L inputs is O�L2�, we
arrive at the interesting conclusion that the number of
stored input-output relations per weight of the network is
proportional to L. This implies that doubling the num-
ber of couplings in the network would increase the storage
capacity by a factor of 2. This makes the proposed archi-
tecture superior to MLN with few (K ø N) hidden units
in which the storage capacity is known to increase at most
logarithmically with the number of weights.
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