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Quantum teleportation uses prior entanglement and forward classical communication to transmit one
instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender
knows classically what state is to be transmitted. We show that the asymptotic classical communication
cost of RSP is one bit per qubit —half that of teleportation —and even less when transmitting part of
a known entangled state. We explore the tradeoff between entanglement and classical communication
required for RSP, and discuss RSP capacities of general quantum channels.
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A principal goal of quantum information theory is
understanding the resources necessary and sufficient for
intact transmission of quantum states. In quantum telepor-
tation [1] an unknown state is transmitted from a sender
(“Alice”) to a receiver (“Bob”) using classical commu-
nication and prior entanglement. Two bits of forward
classical communication and one ebit of entanglement (a
maximally entangled pair of qubits) per teleported qubit
are both necessary and sufficient, and neither resource can
be traded off against the other. In remote state preparation
(RSP) the goal is the same— for Bob to end up with a
single specimen of a state—but here Alice starts with
complete classical knowledge of the state.

Pati [2] and Lo [3] showed that for special ensembles of
states (e.g., qubit states on the equator of the Bloch sphere)
RSP requires less classical communication than teleporta-
tion, but Lo conjectured that for general states the classical
communication costs of the two tasks would be equal. Here
we show that, in the presence of a large amount of prior en-
tanglement, the asymptotic classical communication cost
of RSP for general states is one bit per qubit, half that of
teleportation. Most of this entanglement is not destroyed,
but, as we will show, can be recovered afterward using
backward classical communication from Bob to Alice,
a resource that is entirely unhelpful for teleportation.

We show that RSP is unlike teleportation in that it ex-
hibits a nontrivial tradeoff between classical communi-
cation and entanglement, the classical cost of preparing
a generic qubit state ranging from one bit in the high-
entanglement limit to infinitely many without prior en-
tanglement (if any finite classical message, say of k bits,
sufficed, Bob could use that message to make infinitely
many copies, determine the state’s amplitudes to more than
k bits precision, and thereby violate causality).

We introduce two new kinds of channel capacity, reflect-
ing a general quantum channel’s asymptotic ability to be
used for remote state preparation, with or without prior
entanglement, and relate these capacities to the regular
quantum and classical capacities with or without prior
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entanglement. Finally, we discuss remote preparation of
states entangled between Alice and Bob.

RSP in the high-entanglement limit.—To see how a
large amount of shared entanglement enables general states
to be remotely prepared at an asymptotic cost of one bit
per qubit, it is helpful first to consider an exact (nonasymp-
totic) RSP protocol for the special ensemble mentioned
earlier: equatorial states. Assume Alice and Bob share a
number of singlets, i.e., pairs of qubits in the state jC2� �
j01� 2 j10� (we will often omit the normalization
1�
p

2 ). To remotely prepare an equatorial state
jc� � j0� 1 eifj1�, Alice takes one of her singlets
and measures it [2] in the basis �c, c�� where c� denotes
the antipodal (orthogonal) state to c. If the outcome is
c� she knows (by the properties of the singlet state)
that Bob’s remaining half of the singlet is in the desired
state c. But equally often Alice’s outcome is c, leaving
Bob with c�, the antipode of the state Alice wished to
prepare. For equatorial states, Bob can correct c� to c

by applying the Pauli operator sz , a 180± rotation about
the z axis. Thus Alice can remotely prepare an arbitrary
equatorial state known to her by measuring a shared
singlet in the basis determined by that state, and sending
Bob the one-bit measurement result, which tells him
whether to apply sz . But for general, nonequatorial states,
the corrective transformation c� ! c is antiunitary, and
Bob cannot perform it by any physical means.

Now suppose Alice wishes to remotely prepare a large
number of general qubit states c1, c2, . . . , cn, and that she
and Bob share an unlimited supply of singlets. For each
j � 1 · · · n, Alice measures m � 2n1logn of her singlets
in the basis �cj , c

�
j �, and stores the results as one row

of an n 3 m table T , writing T � j, k� � 1 for a success
(meaning Bob’s half of that singlet is in the desired state
cj) and T � j, k� � 0 for a failure (meaning Bob’s half is in
the antipodal state c

�
j ). Alice does all this without telling

Bob anything, obtaining a large table of mn independent
random zeros and ones. When she is done making all the
measurements, she looks for a column of all ones, and uses
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n 1 logn bits to tell Bob its index. Bob keeps the states in
the successful column and discards all the others. If [with
probability o�1�] no successful column exists, Alice tells
Bob so, then uses n more singlets and 2n classical bits to
simply teleport the states to Bob. Thus one bit per qubit is
asymptotically sufficient for RSP; it is also necessary [3]
by causality.

This protocol can be generalized from qubits to states
in a d-dimensional Hilbert space, allowing them to be re-
motely prepared at an asymptotic classical communication
cost of log2d bits per state. Instead of singlets, Alice and
Bob use maximally entangled pairs of the form jF

1
d � �

j00� 1 j11� 1 · · · 1 j�d 2 1� �d 2 1��. Alice and Bob
prearrange mn such states with m ¿ dn in an array of
n rows and m columns. For each row j, Alice measures
her halves of the pairs in a basis including c

�
j , the com-

plex conjugate of the state she wishes to remotely prepare.
If (with probability 1�d) her measurement outcome is c

�
j ,

Bob’s half of the entangled pair will be left in the desired
state cj , and Alice enters a 1 in her success/failure table;
otherwise she enters a 0.

The high-entanglement RSP protocol described above
uses a large number of ebits, approximately 2n per state
sent if n qubits are transmitted. But, using back com-
munication, this protocol can be modified so that only a
constant number of ebits are needed per state transmitted,
while still only requiring one classical bit. To achieve this,
we first (following a suggestion of Ambainis) divide the n
states to be transmitted into subblocks of size s; s ! `

as n ! `, but 2s�n ! 0. Within each subblock the ba-
sic scheme described above is followed. But instead of
performing a separate von Neumann measurement on her
half of each of the ebits, Alice does a less intrusive mea-
surement: for each set of s ebits constituting a column
in her table, she performs a two-outcome incomplete von
Neumann measurement. The “1” outcome, obtained with
probability 22s, signals that all Bob’s particles are in the
desired state P

s
j�1jcj�; the “0” outcome signals all other

possibilities. The joint state remaining between Alice and
Bob when “0” is obtained, r0, is still highly entangled, and
pure entanglement can be recovered from it by distillation.
From Bob’s viewpoint the state r0 is mixed, because he
does not know the bases of Alice’s measurements. Aver-
aging over all such bases, the diagonal elements of r0 in
the generalized Bell basis are

�Bjr0jB� �
2s 2 2
2s 2 1

dsr 1

µ
1
3

∂s2r 1
2s�2s 2 1�

, (1)

where B is any tensor product of Bell states �F6 � j00� 6

j11�, C6 � j01� 6 j10�� containing r instances of F1

and s 2 r instances of the other Bell states. Alice and
Bob collect all these r0 states until s0 RSPs have been per-
formed, with s ø s0 ø n; at this point they have about
c � s02s�s copies of r0. They then perform an entangle-
ment distillation procedure. After dephasing in the Bell
basis (which can be accomplished by a twirling [4] per-
formed by Alice and Bob), the state r

≠c
0 can be approxi-
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mated, using a typical subset, by an equal mixture of 2cS

different products of Bell states. Here the von Neumann
entropy of the twirled r0 is S � s22s�2 1

1
2 log3�. By the

random-hashing technique [4], c�s 2 S� pure singlets can
be distilled from this mixture with the help of back com-
munication from Bob to Alice. Counting also the one pair
consumed when the successful “1” outcome is obtained,
the number of ebits consumed per state transmitted be-
comes e0 � 1 1 cS�s0 � 3 1

1
2 log3 � 3.79. This point

�e0, b � 1� is labeled R in Fig. 1.
More restricted protocols and Lo’s conjecture.—For

any set of n states to be remotely prepared, the above pro-
tocols are exactly faithful, i.e., always work, reproducing
exactly the desired output even for finite n, but only asymp-
totically efficient, since the expected classical communica-
tion approaches one bit per qubit only in the limit of large
n, while for any finite n, there is some chance that the
classical communication cost will exceed that required for
teleportation. We know of no exactly faithful RSP protocol
for finite n that always uses less classical communication
than would be required by teleportation. In this sense Lo’s
conjecture still stands.

In a more restricted setting we can prove Lo’s conjec-
ture. Suppose Alice wants to remotely prepare a single
quantum state c in a d-dimensional Hilbert space (for sim-
plicity d is a power of 2) for Bob. As in teleportation,
we restrict Bob to performing a unitary transformation on
some system in his lab determined by the classical data
he receives from Alice. Also, as in teleportation, we re-
quire that the probability that Alice sends message i to
Bob not depend on the state that she is remotely prepar-
ing. If such a protocol is exactly faithful, we can show
that it must use at least 2 logd classical bits of commu-
nication from Alice to Bob, as in teleportation. The ar-
gument is as follows. Let k be the number of classical
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FIG. 1. Entanglement (e) and forward classical communica-
tion (b) costs of remotely preparing qubit states in various ways,
including teleportation (T ), our high-entanglement method with
entanglement recycling (R), and convex combinations (solid
line between T and R). The shaded region b , 1 is inac-
cessible because it would violate causality. Solid curve below
and to the right of T is our low-entanglement method and con-
vex combinations with teleportation. Dashed curve is Devetak-
Berger method.
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bits that Alice sends to remotely prepare c. We will
have Bob guess this data. He infers from the protocol
that he will get message i�i � 1, . . . , 2k� with probability
pi �

P2k

i�1 pi � 1� . Thus he flips a coin with bias pi and
he implements the corresponding unitary transformation in
his lab. Since the protocol only allows him to carry out uni-
tary transformations, guessing wrong means that instead
of getting jc� he will obtain Ujc� where U is some uni-
tary transformation. The total probability p of Bob guess-
ing correctly is given by the sum over i of the probability
that Alice sends i and Bob correctly guesses i, which isP

i p2
i $ 22k

P
i pi � 22k . Alice and Bob have thus cre-

ated a channel S which acts upon the state c in Alice’s lab
and outputs the state r � S �jc� �cj� � pjc� �cj 1 �1 2

p�Swrong�jc� �cj� where p $ 22k . Since Bob used zero
communication to make this state, it must be that

f�S � 	
1

Vol�c�

Z
dc �cjS �jc� �cj� jc� #

1
d

. (2)

If not, Alice and Bob would have created a superluminal
channel. We can use a result by the Horodeckis [5] which
relates f�S � to the maximally entangled fraction F�S � 	
�F1

d j �1 ≠ S � �jF1
d � �F1

d j� jF1
d �, i.e., f�S � � 
F�S �d 1

1���d 1 1�. Since S is the identity operator with proba-
bility larger than or equal to 22k we have f�S � $ �22kd 1

1���d 1 1� . 1�d for k , 2 logd in contradiction to (2).
Thus in a very restricted “teleportation” type of RSP, Lo’s
conjecture still holds. Besides being exactly faithful, this
restricted protocol is oblivious; Bob receives no additional
information about c other than the state c itself. This is
due to the fact that the probability with which Alice sends
a classical message does not depend on the state c. In
the high-entanglement RSP protocol, by contrast, Bob can
gain some additional information about c by measuring the
singlets in the unsuccessful columns instead of recycling
them. Perhaps Lo’s conjecture holds for all oblivious, ex-
actly faithful protocols.

For the next two sections we relax the requirement of
exact fidelity, requiring only that protocols be asymptoti-
cally faithful, i.e., for any set of n input states, they should
produce an approximation to the desired output c1 ≠ c2 ≠

· · · ≠ cn whose fidelity approaches 1 in the limit of large
n. This definition has the advantage of allowing RSP to
be composed with other asymptotically faithful processes
such as Schumacher compression [6].

Low-entanglement RSP.— Here we bound the forward
classical communication b needed to remotely prepare
qubit states using entanglement e , 1 ebit per qubit.
To do so, Alice sends Bob some classical information
about the states c1 · · · cn, so as to reduce their posterior
von Neumann entropy from his viewpoint and allow
her to teleport them using ,1 ebit per qubit. For ex-
ample, a qubit uniformly distributed over a circular cap
Cu of radius u , p and area A�u� � 2p�1 2 cosu�
centered on the north pole has von Neumann entropy
S�u� � H2
�1 2 cosu��4� , 1 and can be teleported at
an asymptotic cost of 2S�u� bits and S�u� ebits.
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First assume the states c1 · · · cn are uniformly dis-
tributed (a restriction we later remove). For each block
length n and cap radius u, suppose Alice and Bob have
agreed on an n by m � n
4p�A�u��n array of random
rotations R�i, j�, i � 1 · · · n, j � 1 · · · m. Then, given the
states c1 · · · cn, Alice constructs a success/failure table
where a success, T�i, j� � 1, is counted if and only if
the rotated state R�i, j�ci falls within the standard cap
Cu . As before she looks for an all-successful column,
and uses an expected S0�u� 1 o�1� bits per state, where
S0�u� � log2
4p�A�u��, to tell Bob its index j. Finally,
she Schumacher compresses the states in the successful
column and teleports them, at an additional asymptotic
cost of 2S�u� bits and S�u� ebits per state, to Bob, who
rotates them back into their original positions. If there is
no successful column, Alice teleports the states directly,
without compression; but this happens so rarely as to not
increase the asymptotic entanglement and communication
costs, e � S�u� and b � S0�u� 1 2S�u�. The R rotations
need not actually be random: for each n and u, there
always exists a deterministic set of rotations which per-
forms no worse than average on uniformly distributed ci .
We use D�i, j� to denote these deterministic rotations.

To make the protocol work on arbitrary sequences of
states, even ones maliciously chosen to avoid successes
with the particular rotations �D�i, j�� Alice and Bob are us-
ing, Alice divides the states into subblocks of size s �

p
n,

and applies the above protocol separately to each subblock,
but before doing so applies a set of s random prerotations
r1 · · · rs which Bob removes afterward, to the states in each
subblock. Then, even if the original states ci are awk-
wardly located, the randomized states rimodsci will be ran-
dom within each subblock. Reusing the prerotations causes
the deviations of the actual mixed-state output from the
ideal c1 · · · cn to be correlated between subblocks, but be-
cause of the exponentially fast convergence of Schumacher
compression with increasing subblock size, the full n-fold
fidelity still approaches unity in the limit n ! `, for any
sequence c1 · · · cn of states to be remotely prepared. Of
course Alice must tell Bob the prerotations r1 · · · rs so he
can remove them at the end. If the prerotations are de-
scribed with precision, say,

p
s bits, the finite-precision

errors will vanish exponentially rapidly, while keeping the
communication overhead sublinear in n.

Recently Devetak and Berger [7] introduced an im-
proved protocol which they prove optimal among low-
entanglement RSP methods that use a classical message
followed by teleportation to remotely prepare states
uniformly distributed on the Bloch sphere. Shown as
the dashed curve in Fig. 1, their method is like our
low-entanglement methods, but instead of the index of the
first successful column, Alice tells Bob the index of the
column whose states, viewed as a finite ensemble, have
least entropy.

RSP capacities of quantum channels.—Our results
suggest new kinds of capacity for a general noisy quantum
channel, expressing its asymptotic ability to send known
077902-3
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states, with or without the help of prior shared entanglement. For any channel N we define the RSP capacity (which
might depend on the dimension d of the Hilbert space Hd) as

R�d��N � � lim
e!0

lim sup
m!`

Ω
n logd

m
: 'Dmn ;c1,...,cn[Hd 'EmnF�c1 ≠ · · · ≠ cn,DmnN

≠mEmn� . 1 2 e

æ
, (3)
where Emn denotes a possible block encoder used by
Alice, using n classically described states c1, . . . ,cn to
prepare an input to the quantum channel N ≠m (i.e., m par-
allel instances of N ); similarly Dmn denotes a possible
block decoder used by Bob, mapping the m channel out-
puts to some approximation of the state to be remotely pre-
pared; and F�c1 ≠ · · · ≠ cn,DmnN

≠mEmn� denotes the
fidelity of this approximation [the fidelity of a pure state C
under linear map M is naturally defined as F�C,M� �
TrCM�C�]. The entanglement-assisted RSP capacity
RE�N � is defined similarly, except that the encoder and
decoder share unlimited prior entanglement.

Clearly, for any channel, R�d� # C, since the classical
capacity C may be viewed as the channel’s ability to re-
motely prepare classical states (i.e., orthogonal states in
some basis). On the other hand, R�d� $ Q, the quantum
capacity, since the efficiency of transmitting known states
must be at least that of transmitting unknown states.

In the entanglement-assisted setting, we can show that
RE is independent of d and equal to CE, the channel’s
entanglement-assisted classical capacity [8]. This follows
from the fact that logd bits of classical communication are
asymptotically both necessary and sufficient to remotely
prepare a general d-dimensional state.

Without entanglement, there are channels for which
R�2� . Q, for example, a strongly dephasing qubit channel
with C � 1 and 0 , Q ø 1. Given any point �e, b� on
the dashed curve in Fig. 1, such a channel can be used n
times to share �Qn ebits and another n times to transmit n
classical bits, giving R�2� $ min�Q�2e, 1�2b� asymptoti-
cally; hence R�2��Q $ 1�2e for small enough Q. On the
other hand, R�d� � 0 for any purely classical channel (i.e.,
one with Q � 0) , by causality.

Remote Preparation of Entangled States.—Like tele-
portation, RSP can be applied not only to pure states, but
also to parts of entangled states. However, unlike teleporta-
tion, RSP requires less classical communication to prepare
an entangled state in HA ≠ HB, where HA remains in
Alice’s lab, than to prepare a pure state in HB. To take an
extreme example, the standard maximally entangled state
F

1
d in d 3 d dimensions can be converted into any other

maximally entangled state in d 3 d dimensions with no
classical communication at all, because maximally entan-
gled states are interconvertible by local unitary operations
of Alice. Suppose more generally that Alice and Bob share
an unlimited supply of ebits, and that Alice wants to pre-
pare a state c [ HA ≠ HB, which is known to her. We
assume both Hilbert spaces have dimension d; if neces-
sary the smaller can be extended to make this so. Any
state c [ HA ≠ HB can be written in Schmidt form as
c �

Pd
i�1

p
li jai� ≠ jbi�, where some of the li may be
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zero. We give a probabilistic procedure by which Alice
can convert the standard state F

1
d into the desired c with

success probability 1�d if c is separable and greater than
1�d if c is entangled.

Alice begins by bringing the standard state to the form
UAjF

1
d � � jf� �

1
p

d

Pd
i�1 jai� ≠ jbi� by means of a

local unitary transformation UA. She then performs a
local filtering operation on it, which can be described by a
positive-operator-valued measure with two elements, P1

(success) and P0 (failure), the resulting state in each case
being �

p
Pj ≠ I� jf�. Here we take P1 �

1
L

Pd
i�1 li 3

jai� �ai j and P0 � I 2 P1, where L � max�li�. Suc-
cess, which leaves the system in the desired state c,
occurs with probability j�

p
P1 ≠ I� jf�j2 � 1��Ld�,

which is geater than 1�d if c is entangled. This procedure
is exactly faithful and asymptotically efficient in the sense
that for any sequence of states c1 · · · cn [ HA ≠ HB

the expected classical cost is
P

j log�Ljd� 1 O�1� bits.
As with unentangled states, causality sets a lower bound

on the classical cost of RSP for entangled states. The
cost of RSP for a set of states c1 · · · cn must be at least
S�r̄� 2

1
n

Pn
i�1 S�ri� bits, where ri � trAjci� �cij and

r̄ �
1
n

Pn
i�1 ri , because the states could be asymptotically

used to encode that much classical information [9]. We are
investigating how closely this bound can be approached.

RSP can be generalized to multiparty scenarios. For ex-
ample, one may ask whether Alice, using prior entangle-
ment shared separately with Bob and Charlie, can remotely
prepare an arbitrary tripartite state by sending # logdB bits
to Bob and # logdC bits to Charlie.
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