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The physical resources available to access and manipulate the degrees of freedom of a quantum system
define the set A of operationally relevant observables. The algebraic structure of A selects a preferred
tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum
systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using
quantum noncommutative holonomies
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In the past few years we witnessed a strong revival of in-
terest about the notion of quantum entanglement [1]. This
is mainly due to the essential role that such a concept is
supposed to play in quantum information processing (QIP)
[2]. Whenever one has a compounded (or multipartite)
quantum system, in the space of admissible states there
exist states which display uniquely quantum correlations.
These states are referred to as entangled and correspond
algebraically to the existence, in a vector space obtained
by a tensor product, of vectors jc� that are not expressible
by a simple product, e.g., jc1� ≠ jc2�.

Given a physical system S, the way to subdivide it into
subsystems is in general by no means unique. However, it
is a widespread practice in theoretical physics as well as in
everyday life to consider different partitions in subsystems
with the dependence of both the physical regime and the
necessities of the description. It is indeed a quite common
experience to refer sometimes to a system, e.g., an atom,
as elementary and sometimes as a composite, e.g., made
out of electrons and nucleons. The emergence of a dis-
tinguished multipartite structure is strongly dependent on
the physical regime, e.g., the energy scale, at which one is
working and on the set of observations (experiments) the
observer is interested in. This is of course a well-known
lesson from the history of physics, e.g., fundamental vs
composite particles, weak-strong coupling dualities, renor-
malization group, etc.

Clearly even the notion of entanglement is affected by
some ambiguity being relative to the selected multipartite
structure. States that are entangled with respect to a given
partition in subsystems can be separable with respect to
each other. Conversely, states of a system S that is re-
garded as elementary can be viewed as entangled once
S is endowed with a multipartite structure. In this case,
one is in the, somehow paradoxical, situation of having
entanglement seemingly without entanglement.

The above ambiguity is removed as soon as, accord-
ing to some criterion, a preferred multipartite structure is
selected among the family of all possible partitions into
subsystems. This selection has in most cases a well-
defined meaning: the system S is viewed as composed
by S1, S2, . . . if one has some operational access (is able to
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“access,” “control,” “measure”) to the individual degrees
of freedom of S1, S2, . . . * . In other terms it is the set of
“available” interactions that individuates the relevant mul-
tiparty decomposition and not an a priori, God-given par-
tition into elementary subsystems. In this Letter we shall
make an attempt to formalize the ideas brought about by
these simple remarks. Our final goal is to provide a satis-
factory algebraic definition of what a quantum subsystem
is in an operationally motivated framework.

Let us stress that the notion of a virtual subsystem that
we shall introduce admits as a particular instance the one of
quantum code [3,4] and noiseless subsystems [5,6]. This
remark should make clear that virtual subsystems already
play an important role in QIP. In particular, error-avoiding
quantum codes, i.e., decoherence-free [4], have also been
recently experimentally observed [7,8].

Compoundness and tensor products.—Let us begin by
recalling the basic algebraic structures associated with
compoundness. Let S1 and S2 be two classical systems
with configuration manifolds Mi �i � 1, 2�. Roughly
speaking the associated quantum systems have state spaces
given by Hi � F �Mi�, where F denotes some suitable
(complex-valued) function space over the Mi’s, e.g.,
L2-summable functions. Notice that these spaces (actually
Abelian C�-algebras [9]) are the classical “observable”
spaces; the quantum spaces are given by the operator
(non-Abelian) algebras End�Hi�. In the classical realm
the manifold associated with the joint systems S1 _ S2
is given by the Cartesian product M1 3 M2. It follows
that, at the quantum level, one has HS1_S2 � H1 ≠ H2;
indeed F �M1 3 M2� is given by a suitable closure
of F �M1� ≠ F �M2�. This basic functorial identity is
the algebraic ground for the quantum theory axiom
associating a bipartite system with a state space given
by the tensor products of the state spaces describing
the subsystems. The extension to N-partite systems is
obvious. One has another elementary, yet remarkable,
functorial relation given by the canonical isomorphism
End�H1 ≠ H2� � End�H1� ≠ End�H2�. Even in the
quantum realm the observable algebra associated with
a joint system is given by the tensor product of the
subsystem subalgebras.
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Our key observation is that different types of compound-
ness can emerge in the same system when one considers
different sets of observables as the physical ones. Indeed
quite often it makes sense to refer to a subalgebra A
(rather than the full operator algebra) as the physical ob-
servable algebra. Limitations of physical resources may
lead one to select a specific class of operators to be con-
sidered as realizable. For instance, energy supply limita-
tions lead naturally to restrictions to operators X which
have vanishing matrix elements between energy eigen-
states whose energy difference exceeds some bound E.
At the dynamical-algebraic level the selection of a par-
ticular multiparty decomposition means that the algebra of
(operationally relevant) observables A has a tensor prod-
uct structure (TPS), i.e., A � ≠Ai such that all the
observables belonging to the individual Ai’s can be ef-
fectively implemented.

Before proceeding to general constructions it is useful
to consider a very simple example in which one has a
set of subsystems (degrees of freedom) associated with a
rapidly growing sequence of energy scales. Starting from
the ground state and increasing the energy available, one is
able to excite more and more subsystems which, at lower
energy, were frozen. This situation is realized, for in-
stance, in systems in which one has confined directions
or in the cases in which an adiabatic decoupling between
fast and slow degrees of freedom has been performed: the
effective dimensionality of the system is a function of the
energy scale.

The TPS manifold.—Let us consider a Hilbert space
H � �n with a priori no tensor product structure. A
first very natural question is how many nonequivalent
TPS’s can be assigned over H ? More physically, in
how many different ways can H be viewed as the
state space of a multipartite quantum system? If n is a
prime number there are no possibilities: the system is
elementary. If n is not prime it has a nontrivial prime fac-
torization: n �

Qr
i�1 p

ni
i � pi , pi11�. If the exponent

ni of the ith prime factor of n is not one, then several
regroupings are possible, e.g., r � 1, p1 � 2, n1 � 3 )

3 � 1 1 1 1 1, 3 � 1 1 2, corresponding to the
state-space factorizations �8 � �2 ≠ �2 ≠ �2 and
�8 � �2 ≠ �4. When more than one pi appear in
the decomposition of n we see that many other possi-
bilities of writing n as a product of integers arise. In
general, given n, we introduce the set of factorizations
Pn � �P , N�

Q
m[P m � n�, where N denotes the set

of natural numbers.
Given that a factorization P � �n1 # n2 # . . . #

njPj� [ Pn of n is assigned, one has the (noncanonical)
isomorphisms w: H � ≠

jPj
j�1�nj . In the following such

isomorphisms will be referred to as TPS’s over H , and
subsystems of the associated multiparty decomposition
will be referred to as virtual.

Given a distinguished TPS, say w0, one can identify the
group of unitaries U�H � and U�≠j�nj � via the alge-
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bra isomorphism U � w
21
0 ± U ± w0. A suitable quo-

tient of this latter unitary group parametrizes the space of
nonequivalent TPS’s. Indeed two elements, U and W , of
U�≠j�nj � define equivalent TPS’s if either U � U1WU2,
where the Ui’s are multilocal transformations, i.e., Ui [QjPj

k�1 U�nk� �i � 1, 2�, or the Ui’s are permutations of
factors with equal dimension. In the first case the TPS’s
differ just by a change of the basis in each factor, and in
the second by the order of the factors that in turn amounts
simply to a relabeling of the subsystems. The space of
nonequivalent TPS’s over �n will be denoted by Tn.

Once a given multiplicative partition �ni� of n is chosen
along with a particular w, one has H � ≠

N
i�1Hi �Hi :�

w��ni �	 and then End�H � � ≠
N
i�1 Ai, where Ai :�

End�Hi�. For any set of unitaries in H labeled by the ele-
ments l of some manifold M , e.g., external fields, one can
define Ai�l� :� UlAiU

y
l �i � 1, . . . , N� that describes

a family of multipartite structures over H parametrized by
points of M . As noticed above not all the points of M
necessarily correspond to different TPS’s. Indeed it can
happen that different l’s can result in the same structure,
e.g., UlAiU

y
l � Ai . If a state is entangled (product)

with respect to a TPS labeled l [ Tn it will be referred
to as l entangled (l product).

If E: H � �1
0 denotes an entanglement measure over

H with respect to a given TPS, say l � 0, one has that
El :� E ± Ul is a l-entanglement measure. In turn the
latter provides a natural measure of the “distance” between
the TPS at l fi 0 and that at l � 0. Indeed it appears quite
natural to say that the more the l � 0 product states are
l-entangled the more the TPS at l differs from the one at
the origin. To make this idea quantitative, one has to make
it independent of the particular state; this can be done ei-
ther by maximizing or by taking the average over all the 0-
product states. In this latter case, one finds that the distance
one is looking for is nothing but the (square root of ) entan-
gling power of Ul [10]: e�U� �

R
dc1 dc2 E�Ujc1� ≠

jc�2�. Here the integral is done with respect to the uni-
form, e.g., Haar, measure over the pure product state
manifold.

In order to exemplify the notion of the TPS manifold
we now introduce a family of TPS’s over an infinite-
dimensional state space parametrized by a group of
N 3 N matrices. Let us consider N harmonic oscillators.
The global state space is given by HN :� ≠

N
i�1Hi,

where each of the factors is the single boson Fock space,
i.e., Hi � span�jn��n[N associated with the annihilation
and creation operators ai and a

y
i �ay

i aijn� � njn��. Let
U [ U�N � be a complex N 3 N unitary matrix. The
operators aU

i :�
PN

j�1 Ujiaj �i � 1, . . . , N� represents

new bosonic modes, i.e., �aU
i , a

Uy
j 	 � dij, �aU

i , aU
j 	 � 0;

moreover one has H � ≠
N
j�1H

U
i , where the H

U
j ’s are

the Fock spaces associated with the aU
j ’s. Notice that

the Fock vacuum j0� :� ≠i j0�i is U independent, i.e.,
aU

J j0� � 0�; U, j�. One has H
U

j � A
U
j j0�, where A

U
j
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is the algebra generated by aU
j and a

Uy
j . States such as

a
Uy
j j0� are disentangled with respect to the TPS defined

by the given U but entangled with respect to the one
associated with, e.g., U � '.

Virtual bipartitions. —Now we address the following is-
sue: When is it legitimate to consider a pair of observable
algebras as describing a bipartite quantum system? Sup-
pose that A1 and A2 are two commuting �-subalgebras of
A :� End�H � such that the subalgebra A1 _ A2 they
generate, i.e., the minimal �-subalgebra containing both
A1 and A2, amounts to the whole A, and moreover one
has the (noncanonical) algebra isomorphism,

A1 _ A2 � A1 ≠ A2 . (1)

The standard, genuinely bipartite, situation is of course
H � H1 ≠ H2, A1 � End�H1� ≠ ', and A2 � ' ≠

End�H2�. If A0
i :� �X��X,A1	 � 0� denotes the com-

mutant of A1, in this case one has A
0
i � A2.

It is important to mention that a prototypical and
ubiquitous situation described by Eq. (1) is when A1 and
A2 are local observable algebras associated with disjoint
regions of space at equal time. More generally such an
independence of local degrees of freedom, e.g., quantum
fields, is encoded in terms of commutativity between
observables supported on causally disconnected domains
[11]. Notice also that the spatial separation between par-
ties, e.g., Alice and Bob, is a common assumption in proto-
cols for quantum communication, e.g., teleportation [2].

The point of view advocated in this Letter is to con-
sider condition (1) as the definition of a bipartite system,
regardless of the “real” compoundness or not of the under-
lying state space. Accordingly we shall consider as a real
entanglement the one occurring in that case. The (nearly
obvious) point is that, in order to take computational ad-
vantage of this virtual entanglement, one must have access
to, i.e., to be able to control, the subalgebras A1,2. As far
as the operations in A1 and A2 being easily realizable
(accessible) in the lab we shall consider them as primitive
and local, regardless of how they look at the original level.

The theory of noiseless subsystems [5,6,12] provides an
important exemplification as a well as a source of inspi-
ration for the approach to compoundness advocated here.
Let us consider a system made of N real subsystems, e.g.,
qubits. Suppose that the algebra of relevant interactions is
given by A1 < A

0
1, where A1 [9] is

A1 � ©J'nJ ≠ MdJ ��� . (2)

This decomposition reads at the state-space level as
H � ©J�nJ ≠ �dJ . For a fixed label J, one finds
that the elements of A1 �A0

1� act as the identity on
the � nJ ��dJ � factor. This means that the system is
viewed, for all practical purposes, as a bipartite system,
in which the observables of the first (second) subsystems
are given by A1 �A0

1� . For collective decoherence, A1

is the interaction algebra generated by couplings with the
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environment invariant under qubit permutations, while
A

0
i is given by any linear combination of permutation

operators [6]. In particular the latter algebra is generated
by exchange, i.e., Heisenberg-like operators between the
different pairs of qubits [12,13].

Generally speaking Eq. (2) shows in which sense an ob-
servable algebra A1 �A0

1� is associated with a collection
of virtual subsystems, i.e., the �dJ ��nJ � factors, labeled
by its spectrum. It is worth observing that when A1 is
Abelian all the dJ ’s are equal to 1. In this case, if nJ . 1,
the Jth factor of the state-space decomposition describes a
type of hybrid bipartite system in which one of the factors
is quantum, whereas the other represents a classical system
with a one-point configuration space. This is exactly the
situation one meets in the case of quantum codes, both er-
ror correcting [3] and error avoiding [4]. In this latter case
the algebra A1 is generated by the operators coupling the
computing system to its environment and A

0
i is the set

of interactions necessary to perform computations entirely
within the decoherence-free sector [6].

To make clear the connection with the quantum error
correction, let us consider a set �Xi�k

i�1 of k # n linear in-
dependent traceless “parity” operators over H � ��2�≠n,
such that Xi � X

y
i , X2

i � ', and �Xi, Xj	 � 0 �i, j �
1, . . . , k�. Following standard arguments of quantum error
correction [3], one can show that the Xi’s generate an
Abelian algebra A � �Zk

2 . The associated state-space
decomposition is given by

H � ©J[Zk
2

�2n2k

≠ � � �2n2k

≠ �2k

. (3)

It is easy to see that the commutant of A contains
the algebra of operators over the first factor in the de-
composition above This means that the set of operators
with well-defined parities defines and controls a virtual
subsystem of n-k bits. Analogously the set of “odd”
operators (���O�' i�Xi ,O� � 0���� defines and controls the
second k-qubit subsystem. For instance, the parity X1 :�
sx ≠ ' defines the natural bipartite structure over ��2�≠2,
whereas X 0

1 � s≠2
x defines TPS such that states such

as 221�2�j00� 6 j11�� are disentangled. Notice that in
error correction theory the first (second) subsystem is
related to the code (syndrome). For any unitary U, the
operators Xi�U� :� UXiUy span an algebra isomorphic
to A above. Again, one has a continuous set of TPS’s
parametrized by points of a unitary group [14].

Turning back to the characterization of pairs of (finite-
dimensional) subalgebras satisfying Eq. (1) by using
Eq. (2) it is easy to prove the following [15].

Proposition. —Let A1 and A2 be two commuting
�-subalgebras of a finite-dimensional �-algebra A. A
necessary and sufficient condition for the validity of (1) is
that A1 > A

0
1 � �', i.e., A1 is a factor.

Holonomic control on subsystems.—In this paragraph
we show that the holonomic approach to quantum compu-
tation [16] provides a natural setting for the issue of infor-
mation processing within a (virtual) subsystem.
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Let X [ End�H � � Mnd��� be a Hermitian operator
with a spectrum of d isodegenerate eigenvalues, i.e., X �Pd

i�1 xi
Pn

k�1 jki� 
kij, and �Ul�l[M , U�H � be a
set of unitaries parametrized by the point of some
(control) manifold M . Then the set of X�l� :�
UlXU

y
l is a family that in the generic case, for suffi-

ciently large D � dimM , satisfies the conditions for
(universal) holonomic quantum computation [16] on the n-
dimensional degenerate eigenspace Ci � span�jki��n

k�1 �
�n ≠ ji� �i � 1, . . . , d� of 'n ≠ X. This implies that the
holonomy group Hol�Ai� associated with the connection
u�n�-valued 1-forms, Aab

i � 
aj ≠ 
ijUy
l dUljb� ≠ ji�,

d :�
PD

m�1 dlm ≠m �a, b � 1, . . . ,n�, is the whole
U�Ci� � U�n� ≠ ji� 
ij [16]. By denoting collectively
with A the set of the Ai’s, one can therefore write that

Hol�A� � ©d
i�1 U�n� ≠ ji� 
ij . U�n� ≠ 'd . (4)

The last inclusion tells us that in the generic case the holon-
omy group of A will contain the whole unitary group of
the �n subsystem. Once the holonomic family �X�l��l is
given, any transformation, i.e., computations in the first
subsystem, can be generated holonomies. Notice that,
since for the real quantum case one must have n $ 2, the
holonomy group is necessarily non-Abelian.

Conclusions.—We analyzed some of the consequences
of the nonuniqueness of the decomposition of a given sys-
tem S into subsystems. Such nonuniqueness implies, at
the quantum level, a fundamental ambiguity about the
very notion of entanglement that accordingly becomes
a relative one. One can parametrize the space of all
possible partitions, i.e., tensor product structures, of a n-
dimensional quantum state space by the points of a set
Tn. The fact of considering all the points in Tn on the
same footing (which amounts to establishing a democracy
between different TPS’s) provides a relativization of the
notion of entanglement. Without further physical assump-
tion, no partition has an ontologically superior status with
respect to any other. The subsystems associated with all
these possible, i.e., potential, multiparty decompositions
were referred to as virtual. A distinguished point of Tn is
selected, i.e., made actual only once the relevant algebra
A of “physical” observables is given. Indeed considering
a given partition as the privileged partition has a strong op-
erational meaning, in that it depends on the set of resources
effectively available to access and control the degrees of
freedom of S. Different sets of resources give rise to dif-
ferent physically relevant partitions. We provided several
examples of natural, though hidden, multipartite structures
arising from the given algebraic structure of A. We briefly
showed that the holonomic approach to quantum computa-
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tion provides one natural way to address the issue of con-
trollability within virtual subsystems. We believe that this
democratic approach to quantum compoundness is, on the
one hand, sound from the conceptual point of view, and,
on the other hand, possibly relevant to QIP.
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