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Recently Chakravarty, Laughlin, Morr, and Nayak [Phys. Rev. B 62, 4880 (2000)] made an interesting
proposal that the cuprate superconductors possess a hidden “d-density-wave” (DDW) order. We study the
implication of this proposal for the superfluid density rs . We find that it predicts a temperature gradient
jdrs�dT jT�0 that is strongly doping dependent near the critical doping at which the superconducting
gap vanishes. This demonstrates that the DDW scenario is inconsistent with existing well-established
experimental data.
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Recently Tallon and Loram critically examined the ex-
isting experimental data on specific heat, photoemission,
magnetic susceptibility, and optical conductivity of the
cuprate superconductors [1]. They argued that these data
are consistent with the existence of two competing en-
ergy gaps, a pseudogap and the superconducting gap, both
of which disperse according to d-wave symmetry. The
pseudogap exists in the normal state of the underdoped
cuprates while the superconducting gap opens up in the
BCS fashion at temperature Tc. Tallon and Loram also ar-
gue that the data indicate the closing of the pseudogap at
a doping level x � 19%.

This observation motivated Chakravarty, Laughlin,
Morr, and Nayak (CLMN) to propose the “d-density-
wave” (DDW) scenario [2]. According to this proposal a
staggered long-range order in the orbital magnetic mo-
ment, as first suggested by Hsu, Marston, and Affleck in
another context [3], exists at low temperatures when the
doping is less than a critical value xc � 0.19. Such order
gives rise to a nonsuperconducting gap (the pseudogap)
with the same �coskx 2 cosky� dispersion as the super-
conducting (SC) gap. Moreover, the DDW order competes
with superconductivity and causes Tc�x� to trace out the fa-
miliar “superconducting dome” in the doping-temperature
phase diagram of the cuprates. So far there is no direct
experimental evidence for the DDW order. Neither is there
evidence for the expected Ising-like phase transition into
such a state. CLMN argue that disorder gets in the way of
a sharp phase transition and turns it into a crossover.

In addition to offering a possible new phase for high-
Tc cuprates, there are a number of attractive features in
CLMN’s proposal. Since the DDW metal (i.e., the normal
state in the presence of DDW order) is a doped band in-
sulator, one expects the Drude weight in the normal state
[4] and the superfluid density in the superconducting state
both to be proportional to the doping density [5], as indeed
found in the experiments. The closing of the DDW gap at
x � 0.19 can easily explain the observed kink in the jump
of the T -linear specific heat coefficient [6]. In addition, the
small hole pockets centered around the nodes of the DDW
4-1 0031-9007�01�87(7)�077004(4)$15.00
gap could be the progenitor of the Fermi arcs observed in
angle-resolved photoemission [7]. From a technical point
of view a doped band insulator has more resemblance to
a doped Mott insulator than a large-Fermi-surface metal;
hence it is a better starting point for a description of the
underdoped cuprates. Finally the CLMN proposal is crisp
and in principle falsifiable. For all the above reasons we
feel that it is worthwhile to further check the prediction of
this proposal against existing experiments.

The theory presented in Ref. [2] is mean field in nature.
For such a theory, quasiparticles are sharply defined. Since
a much better case can be made for the existence of quasi-
particles in the superconducting states [8], we confine our
calculations to low temperatures where SC order parame-
ters exist.

Among various superconducting properties we focus on
the superfluid density rs because of its rather unconven-
tional doping and temperature dependence, which has been
the focus of many theories [5,9]. Experimentally it is es-
tablished that, for a fairly wide range of doping, drs�dT is
nearly doping independent at low temperatures [10,11]. In
contrast the extrapolated zero temperature superfluid den-
sity changes significantly with doping [11]. In this Letter
we work out the DDW theory’s prediction for rs�T , x� and
demonstrate that it is inconsistent with existing experimen-
tal data.

Even if the quasiparticles are well defined in the under-
doped superconducting states, the Mott constraint can sub-
stantially modify the results of the free, mean-field theory.
Therefore along the mean-field prediction we also present
the results of the “projected DDW model” where the elec-
tron occupation constraint is taken into account. More
specifically, the no-double-occupancy constraint is imple-
mented by introducing the slave bosons (holons) plus the
gauge fields which couple to both bosons and fermions
(spinons). The strict occupation constraint is reflected in
the absence of the Maxwell term for the gauge fields, i.e.,
the coupling constant is infinity. In a recent paper, one of
us looked into such a gauge theory where the underlying
mean-field vacuum is the d-wave resonant-valance-bond
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(RVB) state of Kotliar and Liu [12]. It was shown that the
gauge field can be integrated out exactly in the continuum
approximation of the lattice theory [13,14]. This contin-
uum theory describes the (correlated) density and current
fluctuations of holons and spinons above the length scale
of the interholon distance lh. The physics below such a
length scale is entirely summarized by a few parameters in
the effective action.

In the following treatment of the projected DDW model
we follow the same path taken in Ref. [13] while replac-
ing the Kotliar-Liu RVB mean-field vacuum by the CLMN
mean-field vacuum in the spinon sector. We expect the pro-
gram carried out in Ref. [13] to work well in the presence
of DDW order, because the DDW metal — a doped band
insulator—has very little spinon density and current fluc-
tuations below the length scale lh. The fluctuations above
this length scale are already captured by the analysis of
Ref. [13].

Our results are as follows: For xl , x , xu and at
low temperatures, the mean-field DDW theory predicts a
superfluid density that behaves as

rs�T , x� � rDDW�0, x� 2 aDDW�x�T . (1)

Results for rDDW�0, x� are shown in the main panel
of Fig. 1(a). Note that the zero-temperature superfluid
density is nonzero at x � xl , xu. An infinitesimal tem-
perature will, however, destroy superfluidity because the
pairing gap vanishes there. The temperature gradient of
rs is given by aDDW�x� � t�D�x�, where t is the hopping
integral and D�x� is the maximum d-wave superconduct-
ing gap. The x dependence of aDDW is shown in the inset
of Fig. 1(a). Such strong doping dependence is not seen
experimentally.

The projected DDW model predicts

rs�T,x� � zj�x�rDDW�0, x� 2 zj�x�2aDDW�x�T , (2)

where zj�x� is the current renormalization factor to be ex-
plained later. The doping dependence of zj�x�rDDW�0, x�
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FIG. 1. (a) The doping dependence of rs,DDW�0, x� (main
panel) and aDDW�x� (inset). (b) The doping dependence of
rs�0, x� � zj�x�rDDW�0, x� and a�x� � zj�x�2aDDW�x� using
the same notation as in (a). The parameters used are D0 � 0.2t,
D0 � t, and tb � 2t.
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(main panel) and zj�x�2aDDW�x� (inset) are shown in
Fig. 1(b). Unlike the mean-field result, drs�dT has a
sharp variation near xc which originates from the kink in
the mean-field superfluid density rDDW�x, 0�.

Let us compare the above theoretical results with
existing data on drs�T , x��dT . In the oxygen-depleted
YBa2Cu3Oy thin films reported in Ref. [11], the transition
temperature Tc ranges from 90 K at the optimal doping
to 38 K on the underdoped side. Meanwhile, jdrs�dT j
decreases by about 15% from its maximal value at optimal
doping. In contrast, the mean-field DDW theory predicts
an increase of jdrs�dTj by 140%, provided Tc scales
with D0�x�. After projection, the dependence of jdrs�dT j
on x is about 100%. It should be pointed out that in the
DDW theory jdrs�dTj is not universal and is subject
to quantitative change if the doping and temperature
dependences of the pairing amplitude are different from
what we assumed in this Letter. There is no question
that the experimental data happen to span the plateau
regime in Fig. 1(b) (inset). In this case, the present theory
predicts a rapid increase of jdrs�dT j when the doping
level is decreased even further. In the following we report
the details of the calculations.

The mean-field DDW theory.—Following CLMN, we
adopt the following mean-field Hamiltonian:

HDDW �
X
ks

�Xk 2 m�cykscks 1 iDkc
y
k1Qscks

2
X
k

Dk�ck"c2k# 1 H.c.� . (3)

Here Q � �p, p�, and Xk � 22t�coskx 1 cosky� is the
nearest-neighbor tight-binding dispersion relation, Dk �
D�x� �coskx 2 cosky� is the momentum space DDW order
parameter, and Dk � D�x� �coskx 2 cosky� is the d-wave
superconducting gap function. In the above and in the rest
of the Letter we assume that the lattice constant is unity.

Because of the breaking of translation symmetry by
the DDW order, the Brillouin zone is half of its original
size. For D�x� � 0 there are two bands given by ´k6 �
6

p
X2
k 1 D2

k 2 m [15]. In the presence of pairing, the
quasiparticle dispersion becomes Ek6 �

p
´2
k6 1 jDkj

2.
In order to study the doping dependence of the superfluid

density it is necessary to specify the dependence of D�x�
and D�x� on x. Following CLMN, we use the solution of
≠E�D, D��≠D � 0 and ≠E�D, D��≠D � 0 to parametrize
D�x� and D�x� where

E�D, D� � aD�x 2 xd�D2 1 aD�x 2 xu�D2 1 bDD
4

1 bDD4 1 wD2D2. (4)

Here aD , aD, bD , bD, and w are (positive) material-
dependent constants, while xd �xu� is the doping level
below which the DDW (SC) order parameter becomes
nonzero in the absence of the other. In the presence of pair-
ing the onset of DDW happens at xc , xd , while the SC
order parameter begins its decline precisely at xc and van-
ishes at xl. The functional form for the order parameters
077004-2
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are given by

D�x� � D0

p
�xc 2 x��xc ,

D�x� � D0

p
�x 2 xl���xc 2 xl�; xl , x , xc , (5)

D�x� � D0

p
�xu 2 x���xu 2 xc�; xc , x , xu .
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Here D0 �D0� is the overall scale of D �D�. In the follow-
ing we set xl � 0.05, xc � 0.19, xd � 0.2, and xu � 0.3.

The superfluid density measures the free energy increase
caused by the phase twist of the superconducting order
parameter [16]. After some lengthy but straightforward
algebra we obtain
rab
s �

1
L2

X
k,n�6

µ
1 2

´kn

Ekn

tanh
bEkn

2

∂
≠a≠b´kn 2

b

2L2

X
k,n�6

≠a´kn≠b´kn sech2 bEkn

2

1
4
L2

X
k,n�6

njDkj
2

E2
k1 2 E2

k2

tanh�bEkn�2�
Ekn

�Xk≠aDk 2 Dk≠aXk� �Xk≠bDk 2 Dk≠bXk �
X2
k 1 D2

k
, (6)
where ≠a denotes the momentum derivative in the a di-
rection and L is the linear dimension of the system. By
symmetry, the tensor is diagonal and direction indepen-
dent. The last term is nonzero only if the DDW and su-
perconducting order coexist. It is a consequence of the
time-reversal symmetry breaking. A similar expression,
without the last term, has been derived in Ref. [15]. For
the entire doping range considered, the third term has
a negligible contribution to the superfluid density com-
pared to others. For self-consistency, one can check that
the superfluid density vanishes in the absence of pairing
due to the fact that (i) the third term vanishes identically
when D�x� � 0. (ii) The first two terms combine to giveP

kn ≠a��1 2 tanh�b´kn�2��≠b´kn	 � 0. At temperatures
much smaller than the maximum superconducting gap, the
suppression of superfluid density comes from the thermal
excitation of nodal quasiparticles. The second term in
Eq. (6) gives a T -linear suppression, while all the other
terms contribute higher order temperature corrections. As
a result, the superfluid density takes the form of Eq. (1).

We find aDDW�x� � �4 ln2�t�pD�x�, independent of the
DDW order parameter. As to rDDW�0, x� in Eq. (1), we
were able to compute it only numerically, and the result is
shown in Fig. 1(a).

The general trend of the doping dependence of
rDDW�0,x� shown in Fig. 1(a) is consistent with experi-
mental data. However, the same cannot be said about
aDDW�x�. Because of the competition between DDW
order and superconductivity in the DDW theory, D�x� is
suppressed by the emergence of the DDW order, forming
a dome. Thus D�x� ! 0 as x ! xl, xu which implies
that aDDW�x� diverges as x ! xl, xu. Such x-dependent
drs�dT has not been observed experimentally.

The projected DDW model.—The lattice action for the
projected DDW model is given by L � Lb 1 LDDW 2
i
P

i a0i , where
Lb �
X
i

�b̄i�≠0 1 iai0 2 iAi0 2 mb �bi� 2 tb
X

ij�

�ei�aij2Aij �b̄ibj 1 H.c.� 1 Ub

X

ij�

b̄ibib̄jbj ,

LDDW �
X
i

� f̄is�≠0 1 iai0 2 mf�fis� 2
X

ij�

��t 1 iDij�eiaij f̄isfjs 1 H.c.� 2
X

ij�

�Dije
ifijess0 f̄isf̄js 0 1 H.c.� .

(7)

In the above bi and fis are the holon and spinon fields, respectively. With fij set to zero, LDDW is the real space

equivalent of Eq. (3). In Eq. (7) am is the gauge field that enforces the constraint b
y
i bi 1 f

y
isfis � 1. The DDW

mean-field theory describes a doped band insulator; consequently, spinon density fluctuations occur only above the length
scale lh. Obviously the same is true for the holon density fluctuation. As a result it should be adequate to project out
the spinon and holon density fluctuations above the length scale lh.

The effective action above such cutoff length is

L � Lb 1 Lfp 1 LDirac 1 Lj ,

Lb �
Kb

2
jf�

b�= 1 ia 2 iA�fbj
2 1

Ub

2
dr2

b ,

Lsp �
Ksp

2
jf�

sp�= 1 2ia�fspj
2 1

1
2Usp

�f�
sp≠0fsp 1 2ia0�2,

(8)

Lj � idrb�f�
b≠0fb 1 ia0 2 iA0� 1 Jqpm �f�

sp≠mfsp 1 2iam� 1 r̄

µ
f�
b≠0fb 2

1
2

f�
sp≠0fsp

∂
2 ir̄A0 2 ij0 ? A .
Here r̄ is the doping density, j0 is the transverse
ground-state current produced by the DDW order, and
fb and fsp are the U(1) phase factors associated
with the holon field and the spinon pair field, respec-
tively. In addition, LDirac is the Dirac action for the
spinon quasiparticles near the d-wave gap nodes, and
Jqp � 1
2 �

P
n cy

nstzcns , iyFc
y
1sc1s , iyFc

y
2sc2s� is their

3-current (tz is the third component of the Pauli matrices,
and cns is the spinon Nambu spinor associated with the
nth d-wave gap node). Kb � tbx is the holon superfluid
density, and 4Ksp is the spinon zero-temperature superfluid
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density given by Eq. (1). Ub and Usp also depend on
the parameters in Eq. (7); however, their values are not
important for the following discussion.
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Given Eq. (8) the gauge field am can be integrated out
straightforwardly to yield the final effective action of a
correlated DDW superconductor:
L �
K
2

jf�=f 2 2iAj2 1
1

2U
�f�≠0f 2 2iA0�2 2 zjJqp ? �f�=f 2 2iA� 2 zrrqp�f�≠0f 2 2iA0�

1
r̄

2
f�≠0f 2 ir̄A0 2 ij0 ? A 1 L 0

Dirac . (9)
In the above f � f�
spf

2
b , and

K � KspKb��Kb 1 4Ksp� ,

U � Usp 1 4Ub ,

zj � Kb��Kb 1 4Ksp� ,
(10)

zr � Usp��Usp 1 4Ub� ,

and L
0
Dirac � LDirac 1 2jJqpj2��Kb 1 4Ksp� 1 2�rqp�2�

�U21
b 1 4U21

sp �. Combining the above result with Eq. (1)
we obtain Eq. (2) as the superfluid density prediction of
the projected DDW theory where

zj�x� � tbx��tbx 1 rDDW�0, x�� . (11)

In Fig. 1(b) we plot the x dependence of the zero-
temperature superfluid density in the main panel and
drs�dT in the inset. For x . xl the zero-temperature
superfluid density varies with x in roughly linear fashion.
As in the mean-field DDW theory, drs�dT has a strong
x dependence.

We emphasize that the general conclusion reached in this
Letter is insensitive to the specific parametrization used in
Eq. (5), as long as the Fermi pockets exist in the normal
state. One might argue that the divergence of jdrs�dT j
could be avoided by keeping D�x� finite but invoking, e.g.,
the phase fluctuation, which however lies outside the un-
derlying premises of the CLMN proposal. One might also
argue that by pinning the chemical potential at zero for all
doping, one can avoid the divergence of drs�dT , because
in that case jdrs�dT jT!0 � a�2t�D 1 D�2t� to leading
order in D�D, where a is of order unity. However, this pin-
ning removes an attractive feature of the DDW theory —
the presence of Fermi pockets in the normal state, with-
out which the DDW scenario can no longer account for
the kink in the specific heat jump at 19% doping and the
Fermi arc in angle-resolved photoemission spectroscopy.
Finally in comparing with experiment it is important to
bear in mind that several mechanisms can cause the tem-
perature dependence of the penetration depth to become
T2 at very low temperatures [17,18].
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