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Self-Organized Dynamics on a Curved Growth Interface
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We experimentally address long-time dynamics of an artificially curved growth interface in directional
solidification. Repetitive cell nucleations are found to appear in a disordered way, but to eventually
organize themselves in a coherent way, for long times. This behavior is recovered by simulation of a
nonlinear advection-diffusion model for phase dynamics. The existence of a periodic attractor is sup-
ported by the derivation of a Lyapunov functional for this model.
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Far enough from equilibrium, physical or biological
growth interfaces undergo various instability mechanisms
that generate cellular distortions [1,2]. These shape modu-
lations are of paramount importance for modeling effective
features of interfaces such as their mean growth velocity or
their net flux balance, as well as for determining the result-
ing properties of the surrounding media. For this reason,
they have drawn a great deal of attention in various sys-
tems, both in linear and nonlinear regimes [3]. However,
whereas most experimental configurations and models as-
sume planar interfaces on large scales, those encountered
in nature usually involve a slight curvature due to a large
scale perturbation [4], a large scale instability [3,5], or a
closed interface geometry [3,6,7]. This Letter is devoted
to experimentally investigate whether weak curvature can
generate specific phenomena that are important enough to
modify the global behavior of growth interfaces. For this,
attention will be focused on the canonical example of di-
rectional solidification.

Directional solidification [1,4,8] consists of pulling a liq-
uid mixture in a thermal gradient so as to force it to solidify
at a controlled velocity V . Above a certain critical veloc-
ity, Vc, a primary instability generates cellular distortions
of the growth interface [1]. In thin samples, however, in-
terfaces are usually planar on scales large compared to cell
widths, so that cell dynamics satisfy an average left/right
symmetry. In contrast, interfaces in thick samples usually
display a large scale curvature, due to temperature modu-
lations or to natural convection, for instance. In this case,
left/right symmetry of the mean growth conditions is not
maintained. In this sense, the objective of this study is to
investigate the spatiotemporal implications of this symme-
try breaking.

What makes this experiment distinct is that we artifi-
cially introduce a controlled interface curvature on a scale
large compared to the cell scale. For this, solidification
is studied in thin samples so as to avoid 3D disturbances
and convection [8], but in a configuration where equilib-
rium interfaces are bent. In view of the large difference
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between the curvature radius r of the interfaces and the
typical cell width l ø r, the induced modification seems
weak, especially at the individual cell level. However, it
will prove to dramatically change the spatiotemporal orga-
nization of the growth front by yielding spatial homogene-
ity, repetitive instabilities, and dynamical synchronization.
A simple model of nonlinear advection diffusion for phase
modulation will corroborate this finding. Interestingly, it
shows diffusion yielding, as in the Turing mechanism [9],
a surprising pattern organization.

The experimental setup simply generates large scale cur-
vature by bending isothermal lines. This is obtained by al-
tering the boundary conditions for the thermal field from
straight parallel lines [10] to broken lines delimiting a
V-shaped channel (Fig. 1). Smoothing out of the tempera-
ture field away from the boundaries then makes isothermal
lines bend on the scale of the channel. Although this con-
figuration produces noticeable variations of chemical or
thermal gradient fields on the whole setup, relevant con-
trol parameters will nevertheless be fairly constant on the
small domain studied hereafter.

The samples are made by sandwiching a 75 mm thick
layer of nominally pure succinonitrile, a transparent ma-
terial, between two parallel glass plates, 45 3 150 mm2

wide. (NMR) experiments show a single chemical bond
different from those of succinonitrile [11]. It corresponds

FIG. 1. Sketch of the V-shaped oven including the melting
isothermal line. Rectangular sample, 45 3 150 mm2 wide, is
pushed from the hot side to the cold side, i.e., from the liquid
phase (L) to the solid phase (S). The interface part studied,
2.2 mm wide, extends on one-twentieth of the sample width. It
is centered on the symmetry axis of the setup.
© 2001 The American Physical Society 076101-1
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to a single noticeable impurity: ethylene. Its solutal dif-
fusivity in the liquid phase D � 1.35 3 1025 6 0.05 3

1025 cm2 s21, partition coefficient k � 0.3 6 0.05,
and impurity concentration c` � 2.9 mol % have been
deduced from measurements of the critical velocity Vc,
the melting temperature TL, and the solidification tem-
perature TS [11], given the thermodynamic data of pure
succinonitrile. Nonintrusive observation of the solidi-
fication front is achieved by a shadowgraph technique.
The channel gap is 7 mm at its tip and the temperature
at the hot and cold boundaries is 10 and 100 ±C, respec-
tively. In the domain studied below, the temperature
gradient decreases from 105 K cm21 at the channel tip
to 100 K cm21 at the domain boundaries. The critical
velocity at the channel tip, Vc � 1.1 6 0.1 mm s21, has
been determined as the onset of front destabilization for
waiting times as long as 16tD , where tD � D�V 2 is the
impurity diffusion time. In the sequel, the relevant scales
will be the front curvature radius r � 7 mm and the cell
width l � 80 mm.

The present study is restricted to a small domain around
interface tip (width 2.2 mm, i.e., about r�3) and to the
vicinity of its primary instability: Vc , V , 2Vc. At a
fixed V , one then observes cells involving narrow grooves
and showing a constant evolution (Fig. 2). They actu-
ally drift along the interface and widen until they reach
a critical width lc at which they split into two cells of
size lc�2 (Fig. 2b). Each new cell then resumes evolu-
tion by growing until splitting into a new couple of cells,
etc. This stretch-induced tip splitting is reminiscent of that
arising in radial fingering [7] and of the convective insta-
bilities forced by a mean flow [12]. It gives rise to succes-
sive generations of cells with length bounded in between
�lc�2, lc� by an instability.

This basic behavior of the growth front directly results
from the virtual tangential flow Vt induced by the interface
curvature in the reference frame of the growing interface.
By “virtual,” it is meant that the liquid mixture is actually
at rest in the sample frame but appears to glide along the
front in its own frame. This flow, which actually breaks
the left/right symmetry on the front, is then responsible
not only for cell drift but also for cell enlargement. In

FIG. 2. Snapshots of the cellular solidification front. Image
width is 2.2 mm and V � 1.6 mm s21. Solid phase is below
the interface. (a) On the left side, large cells are displayed as a
result of the stretch produced by the tangential flow driven by
interface curvature. These cells are ready to split. (b) A few
minutes later, these cells start to split.
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particular, denoting s the curvilinear abscissa taken from
the tip and u � s�r the angle between the interface nor-
mal and the pulling direction, one has Vt � V sin�u�. The
flow Vt thus strictly vanishes at the tip �u � 0� and, at first
approximation, grows linearly with curvilinear abscissa s:
Vt � Vs�r. Accordingly, two interface points separated
by a distance l undergo a tangential velocity difference
dVt � Vl�r, following which their distance increases ex-
ponentially with time: l�t� � l�0� exp�Vt�r�. This gener-
ates an exponential stretch of the cells.

As soon as the interface is curved �r , `�, its dynamics
are thus sustained by relaxation oscillations of cell width
in between lc�2 and lc. This may be easily exempli-
fied on spatially homogeneous growth states, since stretch
by tangential flow then stands as the only factor of cell
dynamics. The time scale t of cell width oscillations is
then simply set by the pulling velocity and the curvature,
l�t� � lc�2 exp�t�t� with t � r�V , so that the lifetime
Tc of the cells reads Tc � t ln�2�. On the other hand, for
other states involving different cell widths, thin cells tend
to expand at the expense of neighboring fat cells, thereby
modifying the growth law of individual cells. However,
the previous law nevertheless remains valid on average
over a large portion of the interface, because the size
reduction of one cell is compensated by the size extension
of another. In particular, the number of cell nucleations
observed over time t in an area of size L reads N �t� �
L�lc t�Tc � 1�ln�2� L�lc Vt�r. Quite good agree-
ment with experiment is found in Fig. 3.

Beyond this average evolution, we now wish to focus our
attention on the spatiotemporal organization of the growth
interface by investigating whether cell nucleations occur in
a disordered way or in a coherent way. For this, we made
spatiotemporal diagrams of interface dynamics over about
8Tc, i.e., 5 h (Fig. 4). These are obtained by plotting suc-
cessive image cuts of the cellular interface by a fixed curve,
its mean profile. Cuts are performed at a fixed frequency
just below cell tips and placed one beside the other. Tra-
jectories of cell grooves are detected as dark lines. Their
drift clearly shows curvature-induced advection. Also, cell
nucleations are detected by the occurrence of new grooves,
i.e., new dark lines.
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FIG. 3. The number of splits in a curved area of size L �
19lc involving a curvature radius r � 7 mm. Both pulling
velocity V and growth time t have been varied. The line
corresponds to the expected relationship N�t� � L�lc t�Tc �
1�ln�2� L�lc Vt�r.
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FIG. 4. Spatiotemporal diagram of the growth front for V �
2.2 mm s21. Width of the observed interface is 2.2 mm and
observation time is 5 h. Curvilinear abscissa is vertical and
time increases from left to right. Cell grooves appear as dark
lines and cell splits are identified as new dark lines. Surprisingly,
global regular events (marked in black at the top of the diagram)
are seen in the asymptotic regime.

Figure 4 shows a typical spatiotemporal organization
arising from the beginning of growth. Just after the on-
set of growth, cell nucleations appear on isolated cells or,
at best, on groups of a few cells. In this sense, cell dy-
namics are disordered since there is no long-range spatial
or temporal coherence. However, as time goes on, groups
of quasisimultaneous nucleations include more and more
cells. Finally, after a few lifetimes Tc, nucleations sur-
prisingly appear as an avalanche, thereby giving rise to a
sudden cascade of nucleations in the spatiotemporal dia-
gram. The fact that successive nucleation cascades involve
nearly the same shape and the same delay reveals that a
long-range periodic dynamics has been reached.

When repeating growth in the same sample, a slight drift
of characteristic variables occurs, owing to the mean lateral
diffusion of impurity concentration induced by interface
curvature. However, the important fact is that long-range
periodic dynamics are always established after a long pe-
riod of time, whatever the initial conditions.

The origin of the synchronization of nucleations may be
sought in factors either common to all interfaces, e.g., cell
interaction, or specific to curved ones, e.g., the slight varia-
tions of impurity concentration or of temperature gradient
on the interface. However, by implementing a model of
cellular phase dynamics, we show below that cell interac-
tion is sufficient to recover this synchronization.

We introduce a phase variable w�s, t� labeling cell po-
sition and varying by 2p on a cell. Its dynamics result
from the advection by a tangential flow Vt and the inter-
action between neighboring cells. According to the usual
procedure worked out in weakly distorted systems [3,13],
we model neighbor interaction by a phase gradient expan-
sion. Notice that, besides the resulting advection, curvature
does not favor any direction or position along the inter-
face, since both the thermal gradient and the concentration
gradient remain everywhere normal to it. Therefore, only
even phase derivatives are allowed to model cell interac-
tions here. Moreover, as the phase dynamics are stable
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FIG. 5. Spatiotemporal diagrams derived from numerical
simulation of (1). Only the left part of the front is shown on
the same number of cells and over the same time as in Fig. 4.
Initial conditions are inhomogeneous: ≠q�≠s fi 0. Notice the
synchronization of nucleations in the asymptotic regime.

between nucleations, the first relevant expansion term,
i.e., the second phase derivative ≠2w�≠s2, is sufficient
to model phase interactions [13]. Relevant nonlinearities
are taken into account by allowing the phase diffusion
coefficient D to vary with wave number q � ≠w�≠s �
2p�l�t�. Accounting for the cell advection by the flow
Vt � s�t by a total derivative of w, one then obtains a
nonlinear advection-diffusion equation for phase dynam-
ics, reminiscent of the pattern formation modeling within
a mean flow [12]:

≠w

≠t
1 Vt

≠w

≠s
� D�q�

≠2w

≠s2
. (1)

Positive (respectively, negative) values of D mean relax-
ation (respectively, amplification) of spatial heterogeneity
[3]. In particular, the vanishing of D corresponds to the
onset of cell nucleation by Eckhaus instability, i.e., to qc �
2p�lc here. In its vicinity, higher order terms would be re-
quired to accurately model the phase evolution. However,
at nucleation, the phase gradient expansion breaks down.

This model is “minimal” in the sense that it adds only
phase advection to the phase dynamics of planar interfaces.
However, we show below, both on numerical and theoreti-
cal grounds, that it succeeds in recovering repetitive cell
nucleations and their synchronization.

To perform numerical simulation of phase dynamics for
long periods of time, one must complete the model (1) to
account for cell nucleations. We do it empirically by intro-
ducing an additional cell whenever the effective diffusion
coefficient D vanishes. As this trick does not account for
the real phase field brought about by cell nucleation, one
might fear the occurrence of large cumulative errors. How-
ever, changing the fine structure of the additional phase
field gave no qualitative implication on the long term. A
nearly parabolic form of D�q� vanishing at finite q has been
taken [14], in agreement with the canonical expression of
D for small amplitude stationary patterns [3]. This choice
is not crucial however, since front behavior proves to be
qualitatively independent of the detailed form of D�q�, pro-
vided that D�q� is convex and vanishes at finite q. Simu-
lations then show spatiotemporal diagrams that closely
resemble the experimental ones (Fig. 5). In particular, co-
herence of cell nucleations is reached over few nucleation
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sequences. Moreover, the fact that avalanches occur nearly
simultaneously on all cells reveals that their wave number
is almost the same. The growth front has then reached a
spatially homogeneous state with periodic dynamics.

Attraction to regular dynamics may be shown by con-
sidering the functional:

F �t� �
1
2

Z L

0

µ
≠q̃

≠s̃

∂2

ds̃ . (2)

Here L is the length of a given interface part P at ini-
tial time t � 0, s̃ � s�t�21s, q̃ � �≠w�≠s̃�t , and s�t� �
exp�t�t� denotes the interface stretch factor at time t.
Curvilinear abscissa s̃ corresponds to the interface co-
ordinate once stretch is removed, i.e., in the frame of
the stretched substrate. In particular, whereas advection
stretches the interface, s ! s�t�s, it leaves the Lagrangian
coordinate s̃ unchanged: s̃ ! s̃. Thus, integrating at time
t over the interval 0 # s̃ # L means integrating over the
interface part which was initially located at 0 # s # L.
In this substrate frame �s̃, t�, the cell wave number reads
q̃ � sq and phase dynamics (1) satisfy a nonautonomous
nonlinear diffusion equation:

≠w

≠t

Ç
s̃

� s22�t�D
≠2w

≠s̃2

Ç
t
. (3)

Differentiating (3) with respect to Lagrangian coordi-
nate s̃ and (2) with respect to time t and denoting D0 �
dD�dq, D00 � d2D�dq2, gives, by twice integrating by
parts:

dF

dt
�

∑
≠q

≠s̃

Ω
D

≠2q

≠s̃2 1
2
3

D0

µ
≠q

≠s̃

∂2æ∏L

0

2
Z L

0

∑
D

µ
≠2q

≠s̃2

∂2

2
D00

3

µ
≠q

≠s̃

∂4∏
ds̃ . (4)

Relation (4) enables us to follow the evolution of a
compact wave number distortion surrounded by uniform
cell width domains. Consider an interface part P englob-
ing this distortion domain. As the wave number gradient
≠q�≠s̃ vanishes at its end points s̃ � 0, L, the boundary
terms in relation (4) vanish. This persists at least until
the wave number distortion reaches the boundaries of P .
Meanwhile, the functional variation dF �dt is negative
since D is positive within the cell stability band and D00 is
negative [14]. This means that F is a Lyapunov functional
of the front evolution.

As the functional F only involves Lagrangian variables
�s̃, q̃, L�, its decrease with time is not due to the interface
stretch. Instead, it refers to the constant evolution of the
interface towards better spatial uniformity in between nu-
cleations. As spatial uniformity yields periodicity here,
this supports the fact that the growth interface attains self-
organization for large times.

We have demonstrated experimentally that large scale
curvature of a growth interface yields an asymptotically
organized regime involving spatial homogeneity and pe-
riodic dynamics. The mechanism of this organization is
in two stages: first, dynamics is triggered by instability;
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then, it succeeds in reaching periodic states. From numeri-
cal simulation and derivation of a Lyapunov functional, we
have shown that these behaviors can be recovered within
the simplest model for phase dynamics: advection of the
cell phases by the tangential flow supplemented by non-
linear diffusive interaction between them.

As the ingredients of this model are common to some
growth interfaces, their consequences could extend to sys-
tems other than those studied here. For instance, in eutectic
colonies, a large scale instability naturally gives rise to an
interface curvature [5]. Moreover, the interface stretch re-
sponsible for repetitive cell nucleations could equally be
produced in other systems by other means than the present
virtual flow Vt: real convective flows in 3D solidification
[4], radial expansion of a swarm ring in bacteria colonies
[6], or radial expansion of a viscous interface in radial fin-
gering [7]. As found here, diffusion could then be suffi-
cient to solely induce the synchronization of nucleations.
Interestingly, this reveals its surprising ability in organiz-
ing systems on a long range, as in the formation of Turing
patterns [9]. On a more general note, the present experi-
ment and its analysis show that slightly distorting growth
interfaces on a scale large compared to the width of their
cells can represent a simple method for dynamically regu-
lating growth patterns.
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