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Focusing of Noncircular Self-Similar Shock Waves
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We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar
solution by combining three convergent plane waves with regular shock reflections between them. We
then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose
intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks,
our self-similar shocks have bounded energy density.
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The focusing of shock waves is a subject that has re-
ceived a great deal of attention from the mathematical
and physical communities [1,2] since the seminal work of
Guderley [3]. In this problem, a convergent shock wave
compresses a region occupied by undisturbed gas, concen-
trating energy in a small region of space. Here we dis-
cuss convergent shocks in ideal gases. This is an idealized
model of inertial confinement experiments, where ioniza-
tion effects and multiphase phenomena are neglected.

The flow is described by the conservation laws for the
momentum, mass, and energy in a polytropic gas that
evolves adiabatically:
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Here v is the velocity field, r is the gas density, p is the
pressure, and E � rv2�2 1 p��g 2 1� is the energy per
unit volume of a gas with adiabatic constant g [4].

For 2D and 3D radially symmetric flows, Guderley [3]
found similarity solutions of the second kind [5], in which
the velocity can be written as
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where T is the focusing time, a is the similarity exponent
which depends on g, and F is the scaled velocity function
[3,6,7]. Bilbao et al. accurately computed the similarity
exponents a for a range of g values in [8]. These self-
similar solutions are expected to describe the flow as
t ! T in a small neighborhood of the focusing point
x � 0.

There are three relevant questions regarding similarity
solutions.

(i) If axial symmetry is enforced, does a Guderley self-
similar solution really describe the asymptotic focusing
process as t ! T?
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(ii) When g . 1.909 19 in 2D and when g . 1.869 in
3D, the self-similar solution is not unique [6–8]. Indeed,
there is a continuum of a values for each g in the ap-
propriate range. Which solution, if any, is selected by the
dynamics?

(iii) Axially symmetric solutions are unstable with re-
spect to symmetry-breaking perturbations [1,4]. What is
the corresponding asymptotic behavior? Are there focus-
ing self-similar solutions without circular symmetry?

Numerical simulations by Voloshinov [6] suggest that
the answer to (i) is “yes,” and that, when a is not uniquely
determined by g, the selected value of a is the one that
yields the smoothest solution, as conjectured by Gel’fand.
These computations are rather sketchy and further work
needs to be done in this direction. We will return to this
question on another occasion. Here we focus on ques-
tion (iii).

Whitham used the shock-dynamics approximation [4] to
derive an explicit approximate formula for the exponent
a. In this approximation, a number of rays are defined
as the orthogonal trajectories of the succesive portions of
the shock, and then the propagation of the shocks between
the rays is treated as the approximate 1D flow in a tube
of solid walls. In this formulation, the evolution depends
only on the shock shape and the local Mach number. The
approximation is valid provided the flow behind the shock
does not affect the shock itself.

The dynamics of the flow behind a convergent noncir-
cular shock are very rich, as illustrated by the work of
Demmig and Petersen [1]. Their numerical study of the
full gas-dynamics problem, including the flow behind
the shock, shows that the shock suffers fragmentation:
The principal incident shock forms corners, and develops
a pattern of reflected shocks behind it. Their results are
in agreement with the experiments of Takayama and
Watanabe [2] with perturbed cylindrical shocks.

Using the shock-dynamics approximation, Whitham
also found that circular shocks are unstable with respect
to small perturbations [4]. Later in collaboration with
Schwendeman [9], he found approximate solutions for
polygonal convergent shocks of k sides. These solutions
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show that Mach reflections are generated at the vertices of
the polygonal shock, and that for k $ 3 the vertices are
periodically interchanged with the sides, producing an al-
ternating shock wave. It is interesting to remark that the
approximation used by Schwendeman and Whitham in [4]
does not describe regular reflections, so these polygonal
solutions are expected to be accurate only when the angles
between shocks are large enough to produce Mach reflec-
tions. For triangular shocks, as we shall see (see Fig. 2
below), it is possible to have either Mach or regular reflec-
tions depending on the Mach number. We concentrate on
the case of regular reflection.

In this Letter, we construct a 2D equilateral triangular
exact self-similar solution which accounts for both the flow
ahead and behind of the shocks, and show that appropri-
ately perturbed circular shocks converge to this solution at
focusing. This solution has a bounded density of energy
accumulation, in contrast with the Guderley solution and
the polygonal solutions of Schwendeman.

Let us consider three convergent shock waves as shown
in Fig. 1A. The incident shocks I form an equilateral tri-
angle whose sides propagate at velocity V towards its
center. Inside the triangle, the unperturbed gas has zero
velocity, constant density r1 . 0, and pressure p1 . 0.
The sound velocity is c1 �

p
gp1�r1, and the Mach num-

ber of the incident shocks is M � V�c1.
Suppose that at each corner of the triangle there is a

regular shock reflection [12] (we will discuss this assump-
tion later). The angle 2f between the reflected shocks R
must be computed along with the flow outside the triangle.
Let us now consider a reference system where one of the
corners is stationary (see Fig. 1B). This reference system
moves to the left with velocity Vx � 2V � sinu along the

FIG. 1. (A) Sketch of three convergent shock waves. (B) On
the system of reference of one of the corners, the problem is
equivalent to a shock-reflection problem.
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symmetry line S. In these coordinates, the steady oblique
shock I refracts the horizontal flow incident on the left
with velocity yx � V� sinu and then this flow is refracted
again by shock R. In this manner, we reduce the problem
to a regular shock reflection problem, where the symmetry
line replaces a reflecting solid wall. In our case there is
an additional constraint on the reflected angle, f # p�3,
which means that reflected shocks in Fig. 1A do not cross
each other. Note that, since the converging shocks have a
constant velocity V , the energy density remains bounded.

The regular reflection problem was solved by von Neu-
mann [10,11]. He showed that the problem can be re-
duced to a quadratic equation. Here we write the solution
in terms of the reflected angle f in order to facilitate the
formulation of the constraint f # p�3. The velocity field,
density, and pressure in regions 2 and 3 (see Fig. 1B) are
supposed to be constants. They can be computed using
the oblique Rankine-Hugoniot conditions across the inci-
dent and reflected shocks. By requiring the outflow in re-
gion 3 to be parallel to the symmetry line S, the following
quadratic equation for the reflected angle may be derived:

A tan2f 1 B tanf 1 C � 0 , (3)

with

A � �M2 2 1� �1 1 g 1 M2�1 1 3g 1 2g2�� ,

B � 22
p

3 �g�2 1 g�M4 1 2M2 2 1� ,

and

C � M4�4g2 2 g 2 3�
1 M2�22g2 1 6g 1 4� 2 g 1 1 .

This quadratic equation has two roots. One has to se-
lect the root corresponding to the smaller reflected angle,
tanf � �2B 2

p
B2 2 4AC ��2A, because the other root

yields sub-sonic velocities at region 3, making the reflec-
tion unstable [11]. The selected root gives the angle f

as shown in Fig. 1A. The resulting piecewise constant
solution is self-similar, because the whole pattern scales
linearly with time as the triangle shrinks. The constraint
f # p�3 is satisfied for an equilateral triangular shock
provided the roots of Eq. (3) are real, as can be verified by
evaluating numerically the values of f.

The stability condition for the self-similar solutions is
related to the transition criteria from regular reflection to
Mach reflection. A comprehensive review is given by
Ben-Dor [12,13], and a brief summary with explicit tran-
sition formulas is published in [11]. There are basically
two criteria for the regular-Mach transition: the so-called
mechanical equilibrium criterion (in which the Mach stem
has zero length and moves perpendicularly to the flow)
and the detachment criterion [in which B2 2 4AC � 0 so
that the two roots on Eq. (3) are equal]. These criteria
are depicted in Fig. 2. Shocks with an incidence angle u

for which the point �M,u� lies above the upper curve in
074501-2
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FIG. 2. Transition criteria for regular reflection to Mach reflec-
tion for g � 1.4. The horizontal line at u � 30 represents the
triangular self-similar shock waves. The line at u � 45 repre-
sents the square shocks.

Fig. 2 (representing the detachment criterion) can have
only a Mach reflection. When �M, u� lies below the lower
curve, the regular reflection is stable according to the me-
chanical equilibrium criterion. Between the two curves,
both regular reflection or Mach reflection are possible [13].
For g � 1.4 and incidence angle p�6 (30±), the reflec-
tion is stable under the mechanical equilibrium criterion
if M , 2.695 06, and is stable under the detachment cri-
terion for all M . 1. Thus, for g � 1.4 our triangular
convergent solution is stable for M , 2.695 06. For larger
Mach numbers, the solution may still be stable according
to the detachment criterion, and whether this is the case or
not may depend on the details of the initial conditions.

The construction of the self-similar equilateral triangu-
lar shock can be extended to nonequilateral triangles by
considering three convergent shocks with the same Mach
number. In this case, the reflection angles may be different
at each corner. Indeed, self-similar solutions can also be
constructed for other polygonal shapes besides the triangle,
but, in general, these solutions will tend to be unstable.
The reason is that the incidence angle u will be larger, and
a Mach reflection will appear at the corners. For example,
for a square shock and g � 1.4, the incidence angle is
p�4, and regular reflection will be possible only for M ,

1.24 according to the detachment criterion. For larger
Mach numbers, Mach reflection always occurs. For regu-
lar polygons with five or more sides, there is an additional
reason that excludes the self-similar regime: The reflected
shocks cross each other making our solution invalid. This
can be easily seen in the acoustic limit M � 1, in which
the reflected angles are equal to the incidence angles.
When the self-similar solutions are not possible, the focus-
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ing will presumably proceed according to the alternating
polygonal solution of Schwendeman and Whitham [9].

We now show that suitable perturbations of a circular
shock will lead to the self-similar focusing given by the tri-
angular shock. We implemented a Godunov-based method
to integrate the compressible gas-dynamics equations and
study the initial value problem for a convergent flow.
We used a slope-limited monotone upstream-centered
scheme for conservation laws (MUSCL)-Hancock scheme
with dimensional splitting and with an exact Riemann
solver to compute the fluxes [14]. We validated the
numerical scheme with exact solutions of the 1D Riemann
problem in which the waves form an angle of 30± with
respect to the numerical grid, with the Sedov solution for
a strong blast [15], and with the exact solution for oblique
regular reflection of shock waves.

We studied convergent shocks in a gas with g � 1.4.
We used the Riemann-like initial condition p�r� � 1,
v�r� � 0 and r�r� � 1 on r . R0�1 1 e cos3u�,
and p�r� � 0.01, v�r� � 0 and r�r� � 0.1 for r ,

R0�1 1 e cos3u�. We set R0 � 0.1, e � 0.1, and com-
pute the solution on the domain �21, 1� 3 �21, 1�. The
domain is discretized with a grid of 600 3 600 points.
On the boundary of the domain we use transmission [14]
boundary conditions (normal derivatives of p, r, and v
are zero at the boundary).

In order to accurately compute the flow near the incident
shock, we apply a dynamical gridding procedure similar to
the one used in [16]. Every time that the area C enclosed
by the incident shock is reduced by a factor 2, we inter-
polate the solution in a second grid that is smaller by a

FIG. 3. Every time the area enclosed by the incident shock
reduces a factor 2, the central part of the domain of integration
is regridded by maintaining the same number N of discretization
points.
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FIG. 4. Simulated schlieren of the initial condition, and after
5, 9, 11, 13, and 17 regriddings (in lexicographical order).

factor
p

2 and that has the same number N of gridpoints,
as depicted in Fig. 3. The points outside the new grid are
discarded.

In Fig. 4 we show the resulting evolution of the shocks.
The grey scale of these pictures is proportional to the abso-
lute value of the gradient of the density. On every snapshot,
the coordinates were normalized with the square root of the
area bounded by the incident shock. Figure 4A is the ini-
tial condition. In stage 4B the area reduced by a factor 25,
and a Mach stem appears on the incident shock while new
shocks are generated behind it. These new shocks propa-
gate laterally and cross in 4D. Afterwards, the self-similar
solution is gradually approached. In order to observe the
self-similar regime in this experiment, the area enclosed by
the incident shock has to be at least 217 times smaller than
the initial area. The asymptotic Mach number is M � 6.5.
We verified that the finite size of the computational do-
main does not affect the results by making two additional
computations with R0 � 0.2 and 300 3 300 gridpoints,
and R0 � 0.05 and 1200 3 1200 gridpoints on the do-
main �21, 1� 3 �21, 1�, and verifying that we obtain the
same triangular asymptotics. We also repeated the compu-
tations for g � 5�3, 3�2, and 4�3 and found the same self-
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similar asymptotic behavior. For g � 2 we obtain the tri-
angular solution for e � 0.2, and the alternating solution
for e � 0.1.

Although we have shown that some initial perturbations
of a circular shock of the form r � R0�1 1 e cos3u� will
lead to self-similar triangular focusing, it is natural to ask
for a more comprehensive characterization of the initial
perturbations which lead to triangular asymptotics. For
example, if r � R0�1 1 0.1 cos3u 1 0.02 cos5u�, we still
get self-similar triangular asymptotics, but the triangles are
not equilateral. A systematic investigation of this question
will require a significant improvement of our numerical
scheme. At present we are limited to about 20 regridding
operations, but it appears that many more will be required
if we hope to distinguish between self-similar and alternat-
ing focusing from multimode perturbations.

Other open problems are the detailed stability analysis
of the self-similar solution and the study of the possibility
of generalizations to three dimensions.
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